
MOMENT: A FAMILY OF
OPEN TIME-SERIES FOUNDATION MODELS

Mononito Goswami∗
CMU†

Konrad Szafer‡
CMU†

Arjun Choudhry‡
CMU†

Yifu Cai
CMU†

Shuo Li
UPenn§

Artur Dubrawski
CMU†

ABSTRACT

We introduce MOMENT, a family of open-source foundation models for general-purpose time-series
analysis. Pre-training large models on time-series data is challenging due to (1) the absence of a
large and cohesive public time-series repository, and (2) diverse time-series characteristics which
make multi-dataset training onerous. Additionally, (3) experimental benchmarks to evaluate these
models, especially in scenarios with limited resources, time, and supervision, are still in their
nascent stages. To address these challenges, we compile a large and diverse collection of public
time-series, called the Time-series Pile, and systematically tackle time-series-specific challenges to
unlock large-scale multi-dataset pre-training. Finally, we build on recent work to design a benchmark
to evaluate time-series foundation models on diverse tasks and datasets in limited supervision
settings. Experiments on this benchmark demonstrate the effectiveness of our pre-trained models
with minimal data and task-specific fine-tuning. Finally, we present several interesting empirical
observations about large pre-trained time-series models. Our code is available anonymously at
anonymous.4open.science/r/BETT-773F/.

1 Introduction

Time-series analysis is an important field encompassing a wide range of applications ranging from forecasting weather
patterns Schneider and Dickinson [1974] or detecting irregular heartbeats using Electrocardiograms Goswami et al.
[2021], to identifying anomalous software deployments Xu et al. [2018]. Due to its significant practical value and the
unique challenges that modeling time-series data poses, time-series analysis continues to receive substantial interest
from academia and industry alike. However, modeling such data typically requires substantial domain expertise, time,
and task-specific design.

Large pre-trained language Touvron et al. [2023], Devlin et al. [2019], Chung et al. [2022], vision Li et al. [2023a],
and video Day et al. [2023] models, typically perform well on a variety of tasks on data from diverse domains, with
little or no supervision, and they can be specialized to perform well on specific tasks. We unlock these key capabilities
for time-series data and release the first family of open-source large pre-trained time-series models, which we call
MOMENT. The models in this family (1) serve as a building block for diverse time-series analysis tasks (e.g., forecasting,
classification, anomaly detection, and imputation, etc.), (2) are effective out-of-the-box, i.e., with no (or few) particular
task-specific exemplars (enabling e.g., zero-shot forecasting, few-shot classification, etc.), and (3) are tunable using
in-distribution and task-specific data to improve performance.

MOMENT is a family of high-capacity transformer models, pre-trained using a masked time-series prediction task on large
amounts of time-series data drawn from diverse domains. Below we summarize our key contributions.

C1: Pre-training data. A key limiting factor for pre-training large time-series models from scratch was the lack of a
large cohesive public time-series data repositories Zhou et al. [2023], Gruver et al. [2023], Jin et al. [2023], Ekambaram
et al. [2024], Cao et al. [2023]. Therefore, we compiled The Time-series Pile, a large collection of publicly available

∗Correspondence at mgoswami@andrew.cmu.edu.
†Auton Lab, Robotics Institute, Carnegie Mellon University
‡KS and AC contributed equally, order decided using random generator.
§Department of Computer and Information Science, University of Pennsylvania

ar
X

iv
:2

40
2.

03
88

5v
1

 [
cs

.L
G

]
 6

 F
eb

 2
02

4

anonymous.4open.science/r/BETT-773F/
mgoswami@andrew.cmu.edu

data from diverse domains, ranging from healthcare to engineering to finance. The Time-series Pile comprises of over 5
public time-series databases, from several diverse domains for pre-training and evaluation (Tab. 9).

Imputation

Long-horizon Forecasting

Classification

Short-horizon
Forecasting

Anomaly Detection
MOMENT GPT4TS TimesNet

Figure 1: MOMENT can solve multiple time-series analysis
tasks well (App. D).

C2: Multi-dataset pre-training. Unlike text and im-
ages, which have largely consistent sampling rates and
number of channels, time-series frequently vary in their
temporal resolution, number of channels5, lengths, and
amplitudes, and sometimes have missing values. As a
result, large-scale mixed dataset pre-training is largely
unexplored. Instead, most methods are trained on a single
dataset, and transferred across multiple datasets, but with
modest success Wu et al. [2023], Oreshkin et al. [2021],
Narwariya et al. [2020].

C3: Evaluation. Holistic benchmarks to evaluate time-
series foundation models on diverse datasets and tasks are
in their nascent stages. To evaluate MOMENT, we build on
the multi-task time-series modeling benchmark first pro-
posed by Wu et al. [2023] along multiple dimensions. For
each of the 5 time-series modeling tasks, namely, short-
and long-horizon forecasting, classification, anomaly de-
tection, and imputation we evaluate MOMENT against (1)
both state-of-the-art deep learning as well as statistical
baselines, on (2) more task-specific datasets, (3) using
multiple evaluation metrics, (4) exclusively in limited
supervision settings (e.g., zero-shot imputation, linear probing for forecasting, unsupervised representation learning for
classification).

Finally, we explore various properties of these pre-trained time-series models. In particular, we study whether MOMENT
is aware of intuitive time-series characteristics such as frequency and trend, and the impact of initialization, model size
scaling, and cross-modal transfer.

2 Related Work

Transformers and patching for time-series modeling. There is a growing body of work utilizing transformers for
various time-series analysis tasks Wen et al. [2023]. One issue with applying transformers to time-series data is the
complexity of the self-attention mechanism, which grows quadratically with the size of input tokens (or length of
time-series). Nie et al. [2023] demonstrated that treating time-series sub-sequences (or patches) as tokens instead of
individual time points is a simple, efficient, and effective mechanism for learning useful representations for forecasting.
Drawing inspiration from prior work, we build on top of the transformer architecture which takes disjoint time-series
sub-sequences (or patches) as input.

Masked Representation Learning. Masked pre-training is a widely-used self-supervised learning task where a model
learns to accurately reconstruct masked portions of its input. Masked language Devlin et al. [2019], Raffel et al. [2020]
and image modeling Xie et al. [2022], Li et al. [2023b] have been successfully utilized to learn models from vast
quantities of unlabeled data, which can generalize to a variety of downstream tasks.

For time-series data, prior work has primarily focused on contrastive representation learning Yue et al. [2022], Eldele
et al. [2021], Franceschi et al. [2019]. However, contrastive learning relies on data augmentation, which is both
subjective and data-dependent. In contrast, some studies mask portions of time-series using zeros and learn a model to
reconstruct them Nie et al. [2023], Zerveas et al. [2021], Dong et al. [2023], Li et al. [2023c].

Representation learning via masking is well-suited to all the downstream tasks we care about, especially forecasting
and imputation, as they are instances of the masked reconstruction problem. Owing to its simplicity and success in
vision and language domains, we use the masked prediction task to pre-train our model, using a special embedding (see
[MASK] in Fig. 3) to mask time-series patches instead of zeros.

Cross-modal transfer learning using language models. Lu et al. [2022] had first shown that transformers pre-trained
on text data (LLMs) can effectively solve sequence modeling tasks in other modalities. Some recent studies have

5Temporal resolution reflects sampling frequency of time-series (e.g., hourly, daily); Channel is a single univariate time-series in
multivariate data Ekambaram et al. [2024].

2

leveraged this inherent ability of language pre-trained transformers to “reprogram" LLMs for time-series analysis
using parameter efficient fine-tuning and suitable tokenization strategies Zhou et al. [2023], Gruver et al. [2023], Jin
et al. [2023], Cao et al. [2023], Ekambaram et al. [2024]. However, some of these models Jin et al. [2023], Gruver
et al. [2023] with billions of parameters demand significant memory and computational resources to perform well. We
complement this line of research with three empirical observations (Sec 4.3): we show that (1) transformers trained on
time-series can also model sequences across modalities, (2) during pre-training, randomly initializing weights lead to
lower pre-training loss, than initializing with language modeling weights, and (3) models pre-trained on time-series
outperform LLM-based models such as Zhou et al. [2023], Jin et al. [2023] on many tasks and datasets.

Unanswered Questions. To the best of our knowledge, two questions remain largely unanswered in prior work on
time-series modeling. First, all existing time-series models are (pre-)trained and fine-tuned on individual datasets Nie
et al. [2023], Yue et al. [2022], Wu et al. [2023], Zhou et al. [2023], and the benefits (or drawbacks) of large-scale
multi-dataset pre-training remains unexplored Wen et al. [2023]. Second, there is very limited work on time-series
modeling in limited supervision settings, such as zero-shot forecasting Oreshkin et al. [2021], or few-shot classification
Narwariya et al. [2020]. In our work, we consider both these questions and show that pre-training a model of sufficient
capacity on a large corpus of unlabeled time-series data can in fact enable it to provide reasonably accurate predictions
in limited-supervision settings.

3 Methodology

We first collect a large number of public time-series data into the Time-series Pile and then use it to pre-train a
transformer model on the masked time-series prediction task. We discuss each of these steps in the following
sections.

3.1 The Time-series Pile

Figure 2: Time-series Pile data splits. To prevent data con-
tamination, we carefully partition all datasets into disjoint
train, validation, and test splits. We adhere to the predefined
splits provided by the creators of each dataset. In cases
where such splits are unavailable, we randomly sample 60%
of the data for training, 10% for validation, and 30% for
testing. We only use the training splits of all datasets for
pre-training.

Unlike natural language processing and computer vision,
where large-scale datasets such as The Pile Gao et al.
[2020], and ImageNet-1K Russakovsky et al. [2015]
are easily available for pre-training, public time-series
datasets are much smaller, scattered, and largely task-
specific Ma et al. [2023], Zhou et al. [2023], Gruver et al.
[2023]. To bridge this gap, we collate multiple time-series
from 4 task-specific, widely-used public repositories re-
sulting in a large number of time-series spanning diverse
domains, and time-series characteristics such as lengths,
amplitudes, and temporal resolutions. We call this collec-
tion the Time-series Pile.

Informer long-horizon forecasting datasets Zhou et al.
[2021] is a collection of 9 datasets that are widely used to
evaluate long-horizon forecasting performance Wu et al.
[2023], Nie et al. [2023], Challu et al. [2023]: 2 hourly
and minutely subsets of the Electricity Transformer Tem-
perature (ETT) Zhou et al. [2021], Electricity Trindade
[2015], Traffic California Department of Transportation
[2024], Weather Max Planck Institute for Biogeochem-
istry [2024], Influenza-like Illness (ILI) Centers for Dis-
ease Control and Prevention [2024], and Exchange-rate
Lai et al. [2018].

Monash time-series forecasting archive Godahewa et al. [2021] is a collection of 58 publicly available short-horizon
forecasting datasets with a total of over 100K time-series, spanning a variety of domains and temporal resolutions.

UCR/UEA classification archive Dau et al. [2018] comprises of 159 time-series datasets which are frequently used to
benchmark classification algorithms Ismail Fawaz et al. [2019]. These datasets belonging to seven different categories
(Image Outline, Sensor Readings, Motion Capture, Spectrographs, ECG, Electric Devices, and Simulated Data), vary
substantially in terms of the number of classes and the size of the training set.

TSB-UAD anomaly benchmark Paparrizos et al. [2022a] is a recent collection of 1980 univariate time-series with
labeled anomalies from 18 anomaly detection datasets proposed over the past decade. This collection includes both

3

synthetic and real-world time-series originating from a wide range of sources such as the human body, spaceships,
environment, and web serves.

Minimizing data contamination using careful train-test splitting. We carefully split each dataset into disjoint
training, validation, and test splits, based on splits specified by data creators. When these splits are not available, we
randomly sample 60% of the data for training, 10% for validation, and 30% for testing. Long-horizon forecasting and
anomaly detection datasets are typically long time-series, which are split horizontally as shown in Fig. 2. Conversely,
short-horizon forecasting and classification datasets often contain multiple short time-series. For these datasets, a
complete time-series is either training, validation, or testing. We use the same random seed, set to 13, throughout our
experiments, from pre-training to downstream evaluation, thus ensuring that the MOMENT only observes the training
splits of datasets during pre-training.

3.2 Model Architecture
Transform

er Encoder

Reconstruction H
ead

PatchingMasking Encoding Reconstruction

Transformer
Encoder

Norm

Multi-Head
Attention

+

Norm

MLP

+L ✖

Figure 3: Overview of MOMENT. A time-series is broken into
disjoint fixed-length sub-sequences called patches, and each
patch is mapped into a D-dimensional patch embedding.
During pre-training, we mask patches uniformly at random
by replacing their patch embeddings using a special mask
embedding [MASK]. The goal of pre-training is to learn
patch embeddings which can be used to reconstruct the
input time-series using a light-weight reconstruction head.

MOMENT receives a univariate time-series T ∈ R1×T ,
and a mask M = {0, 1}1×T of length T . 0 and 1 de-
note unobserved and observed time-stamps, respectively.
Reversible instance normalization Kim et al. [2022] is
applied to the observed time-series before breaking it
into N disjoint patches of length P . Each patch is then
mapped to a D-dimensional embedding, using a train-
able linear projection if all time steps are observed, and a
designated learnable mask embedding [MASK] ∈ R1×D,
otherwise. These N patch embeddings serve as input
to the transformer model which retains their shape (1
×D) throughout its operations. Each transformed patch
embedding is then used to reconstruct both masked and
unmasked time-series patches, using a lightweight pre-
diction head. The goal of the prediction head is to map
the transformed patch embeddings to the desired output
dimensions. Since this particular prediction head enables
time-series reconstruction, we call it the reconstruction
head. Fig. 3 shows an overview of our model.

Our transformer encoder retains the modifications pro-
posed by Raffel et al. [2020] to the original Transformer
Vaswani et al. [2017]. Specifically, we remove the addi-
tive bias from the Layer Norm Ba et al. [2016], and place it before the residual skip connections He et al. [2016], and
use the relation positional embedding scheme Shaw et al. [2018]. Below we summarize the intuition behind some of
our key design decisions.

Handling varying time-series characteristics. Time-series vary in length, number of channels, amplitudes, and
temporal resolutions. We address variable length by restricting MOMENT’s input to a univariate time-series of a fixed
length T = 512. As is common practice, we sub-sample longer time-series, and pad shorter ones with zeros on the left6.
Moreover, segmenting time-series into patches quadratically reduces MOMENT’s memory footprint and computational
complexity, and linearly increases the length of time-series it can take as input. We handle multi-variate time-series
by independently operating on each channel along the batch dimension. Like recent studies Zhou et al. [2023], Nie
et al. [2023], we found that modeling each channel independently is an effective strategy for modeling multivariate
time-series. Finally, re-scaling and centering time-series using reversible instance normalization enables MOMENT to
model time-series with significantly different temporal distributions Kim et al. [2022]. We did not explicitly model the
temporal resolution of time-series, since this information is often unavailable outside of time-series forecasting datasets.

Intentionally simple encoder. Closely following the design of transformers in the language domain allows us to
leverage their scalable and efficient implementations (e.g., gradient checkpointing, mixed precision training).

Light-weight prediction head. We use a lightweight prediction head instead of a decoder of the same size as the
encoder, to enable the necessary architectural modifications for task-specific fine-tuning of a limited number of trainable
parameters while keeping the bulk of parameters and the high-level features learned by the encoder intact.

6We found a large majority of classification datasets to have time-series shorter than 512. Besides, a look-back window of length
512 was found to be sufficient for accurate long-horizon forecasting Nie et al. [2023].

4

Tasks Supervision Datasets Metrics Baselines Experimental Setting

Long-horizon
Forecasting Linear Probing

ETT-h1/h2/m1/m2,
Electricity, Traffic,

Weather, Exchange, ILI
MSE, MAE

Time-LLM, GPT4TS,
TimesNet, PatchTST, FEDFormer,

DLinear, N-BEATS,
Stationary, LightTS

Look-back window L = 512,
Forecast horizon H = {24, 60} (ILI), {96, 720} (rest)

Short-horizon
Forecasting Zero-shot

M3 and M4
competition

datasets (subset)
sMAPE7.

GPT4TS, TimesNet, N-BEATS,
AutoARIMA, AutoTheta, AutoETS,

Seasonal Naive, Naive, Random Walk

Statistical methods fit on individual time-series.
Deep learning methods are trained on a source dataset

& evaluated on a target dataset of the same temporal resolution.

Classification
Unsupervised
representation

learning

UCR Classification
Archive (subset) Accuracy

GPT4TS, TimesNet,
TS2Vec, T-Loss, TNC, TS-TCC, TST,

CNN, Encoder, FCN, MCNN,
MLP, ResNet, t-LeNet, TWIESN

DTW

All models except MOMENT were trained on each
individual dataset. Quality of unsupervised representations

measured using the accuracy of a SVM trained on them.

Anomaly
Detection

Linear probing,
Zero-shot

UCR Anomaly
Archive (subset)

Adjusted Best F1
VUS-ROC

GPT4TS, TimesNet,
Anomaly Transformer, DGHL,

Anomaly Nearest Neighbor

Reconstruction-based anomaly detection with window size = 512
MSE between observed and predicted time-series

is used as the anomaly criterion

Imputation Linear probing,
Zero-shot

ETT-h1/h2/m1/m2,
Electricity, Weather MSE, MAE GPT4TS, TimesNet,

Linear, Naive, Cubic Spline, Nearest Neighbors

Randomly mask contiguous sub-sequences of
length 8

Masking ratios: {12.5%, 25%, 37.5%, 50%}

Table 1: Experimental benchmark. We evaluate MOMENT on 5 time-series analysis tasks with an emphasis on limited
memory, compute, and supervision settings.

3.3 Pre-training using Masked Time-series Modeling

We pre-train MOMENT using the masked time-series modeling task. Fig. 3 presents an overview of our pre-training
procedure. During training, we first mask a small number of patches uniformly at random by replacing their patch
embeddings with a learnable mask embedding [MASK]. The corrupted time-series patches are then fed into the
transformer encoder to learn patch representations, which are used to reconstruct the original time-series using a
lightweight reconstruction head. The pre-training objective is to minimize the masked reconstruction error i.e. the
Mean Squared Error between the ground truth and the prediction, averaged over the masked patches.

Pre-training Setup. We pre-train three different sizes of MOMENT, roughly corresponding to the sizes of encoders in
T5-Small, Base, and Large. Specifically, the Base (Small, Large) model uses a 12 (6, 24) layer Transform with
hidden dimensions of size D = 768 (512, 1024), 12 (8, 16) attention heads, and feed-forward networks of size 3072
(2048, 4096), resulting in approximately 125 (40, 385) million parameters. All weights are randomly initialized before
pre-training. All models take an input time-series of length T = 512, breaking it into N = 64 disjoint patches of length
P = 8. We mask 30% of the patches uniformly at random during pre-training.

We use the Adam optimizer with weight decay Loshchilov and Hutter [2019] with λ = 0.05, β1 = 0.9, β2 = 0.999. We
clip the gradient at 5.0, train models using a batch size of 2048, and use cosine learning rate schedule with initial and
final learning rates of 1e−4 and 1e−5, respectively. We use gradient checkpointing Radford et al. [2021] to improve
training throughput and save memory, and train all models in a mixed precision setting, using float-32 for numerically
unstable operations, e.g. layer normalization, and bfloat-168, otherwise. We train all models for 2 epochs.

3.4 Fine-tuning on Downstream Tasks

MOMENT can be seamlessly used for multiple time-series analysis tasks. In this work, we consider 5 practical time-
series analysis tasks as examples, namely: long- and short-horizon forecasting, classification, anomaly detection, and
imputation. For forecasting tasks with horizon H , we replace the reconstruction head with a forecasting head, which
first flattens all the N D-dimensional patch embeddings into a N ×D dimensional vector, and then projects it into
a H-dimensional time-series via a linear projection layer. For all other tasks, we retain the reconstruction head. We
provide detailed descriptions of each task and MOMENT’s configuration in App. D.

Fine-tuning settings. MOMENT can either be fine-tuned end-to-end, or linear probed (MOMENTLP) by freezing all
parameters except for those in the reconstruction or forecasting head. Additionally, for some tasks such as anomaly
detection, unsupervised representation learning and imputation, MOMENT can also be used in a zero-shot (MOMENT0)
setting by retaining its reconstruction head.

4 Experimental Setup and Results

We extend the experimental benchmark introduced by Wu et al. [2023] across along various dimensions. Below, we
outline the design choices of our benchmark and highlight its key distinctions from TimesNet9.

8https://cloud.google.com/tpu/docs/bfloat16
9In this section, we use TimesNet to refer to the benchmark proposed by Wu et al. [2023] instead of their model.

5

https://cloud.google.com/tpu/docs/bfloat16

Methods MOMENTLP Time-LLM GPT4TS PatchTST DLinear TimesNet FEDFormer Stationary LightTS N-BEATS
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Weather 96 0.154 0.209 - - 0.162 0.212 0.149 0.198 0.176 0.237 0.172 0.220 0.217 0.296 0.173 0.223 0.182 0.242 0.152 0.210
720 0.315 0.336 - - 0.326 0.337 0.314 0.334 0.333 0.362 0.365 0.359 0.403 0.428 0.414 0.410 0.352 0.386 0.331 0.359

ETTh1 96 0.387 0.410 0.408 0.429 0.376 0.397 0.370 0.399 0.375 0.399 0.384 0.402 0.376 0.419 0.513 0.491 0.424 0.432 0.399 0.428
720 0.454 0.472 0.523 0.514 0.477 0.456 0.447 0.466 0.472 0.490 0.521 0.500 0.506 0.507 0.643 0.616 0.547 0.533 0.608 0.573

ETTh2 96 0.288 0.345 0.285 0.348 0.285 0.342 0.274 0.336 0.289 0.353 0.340 0.374 0.358 0.397 0.476 0.458 0.397 0.437 0.327 0.387
720 0.403 0.439 0.399 0.435 0.406 0.441 0.379 0.422 0.605 0.551 0.462 0.468 0.463 0.474 0.562 0.560 0.863 0.672 1.454 0.847

ETTm1 96 0.293 0.349 0.384 0.403 0.292 0.346 0.290 0.342 0.299 0.343 0.338 0.375 0.379 0.419 0.386 0.398 0.374 0.400 0.318 0.367
720 0.405 0.416 0.437 0.429 0.417 0.421 0.416 0.420 0.425 0.421 0.478 0.450 0.543 0.490 0.585 0.516 0.527 0.502 0.448 0.448

ETTm2 96 0.170 0.260 0.181 0.269 0.173 0.262 0.165 0.255 0.167 0.269 0.187 0.267 0.203 0.287 0.192 0.274 0.209 0.308 0.197 0.271
720 0.363 0.387 0.366 0.388 0.378 0.401 0.362 0.385 0.397 0.421 0.408 0.403 0.421 0.415 0.417 0.413 0.675 0.587 0.395 0.419

ILI 96 2.728 1.114 3.025 1.195 2.063 0.881 1.319 0.754 2.215 1.081 2.317 0.934 3.228 1.260 2.294 0.945 8.313 2.144 4.539 1.528
720 2.893 1.132 3.245 1.221 1.979 0.957 1.470 0.788 2.368 1.096 2.027 0.928 2.857 1.157 2.178 0.963 7.283 1.985 5.429 1.661

ECL 96 0.138 0.242 - - 0.139 0.238 0.129 0.222 0.140 0.237 0.168 0.272 0.193 0.308 0.169 0.273 0.207 0.307 0.131 0.228
720 0.211 0.305 - - 0.206 0.297 0.197 0.290 0.203 0.301 0.220 0.320 0.246 0.355 0.222 0.321 0.265 0.360 0.208 0.298

Traffic 96 0.391 0.282 - - 0.388 0.282 0.360 0.249 0.410 0.282 0.593 0.321 0.587 0.366 0.612 0.338 0.615 0.391 0.375 0.259
720 0.450 0.310 - - 0.450 0.312 0.432 0.286 0.466 0.315 0.640 0.350 0.626 0.382 0.653 0.355 0.658 0.407 0.508 0.335

Table 2: Long-term forecasting performance measured using Mean Squared Error (MSE) and Mean Absolute Error
(MAE). PatchTST performs the best across most settings, closely followed by MOMENT. We could not run Time-LLM on
weather, electricity, and traffic datasets, due to time constraints, and since we could not fit them into a single GPU (see
Tab. 21). Complete results in Tab. 11.

MOMENTLP GPT4TS TimesNet N-BEATS ARIMA Theta ETS Seasonal
Naive Naive Random

WalkDatasets M4 FR M4 FR M4 FR M4 FR

M3
Yearly 16.74 16.97 18.39 17.40 27.48 16.21 16.82 15.92 17.90 16.70 16.47 17.54 17.54 16.77

Quarterly 10.09 10.62 10.18 10.29 14.41 12.68 11.26 11.30 10.18 9.19 8.99 11.02 11.45 11.72
Monthly 16.04 16.90 15.21 16.37 15.58 16.23 15.63 16.37 15.95 14.96 14.41 17.74 18.53 19.19

M4

Yearly - 14.84 - 14.80 - 14.40 - 14.18 16.19 14.04 14.06 16.33 16.33 14.22
Quarterly - 12.02 - 11.77 - 13.21 - 12.25 10.86 10.21 10.24 12.55 11.65 11.46
Monthly - 15.80 - 15.36 - 15.67 - 15.24 13.68 13.19 13.58 16.00 15.24 15.48

Table 3: Zero-shot short-horizon forecasting performance on a subset of the M3 and M4 datasets measured using
sMAPE. Statistical methods outperformed their deeper counterparts. However, on some datasets (in bold), MOMENT,
GPT4TS and N-BEATS achieved lower sMAPE than ARIMA.

Time-series modeling with limited supervision. Our benchmark comprises of 5 major time-series modeling tasks
of significant practical value, namely long- and short-horizon forecasting, imputation, classification, and anomaly
detection, as outlined in Tab. 1. In contrast to TimesNet, we exclusively consider scenarios characterized by limited
compute and supervision resources. These scenarios mimic practical situations where training (or fine-tuning) a deep
neural network is infeasible due to resource limitations or insufficiently characterized data. Accordingly, we assess
MOMENT in zero-shot settings whenever feasible and through linear probing for a few epochs otherwise.

For classification, we consider the unsupervised representation learning problem, where the goal is to learn represen-
tations of time-series that are useful for downstream classification, without access to labeled data. As in common in
prior work Yue et al. [2022], Franceschi et al. [2019], the quality of representations is measured using the accuracy of a
Support Vector Machine trained on them (App. D.2). For short-horizon forecasting, we consider the zero-shot setting
introduced by Oreshkin et al. [2021]. In particular, we fine-tune MOMENT on a source dataset using a forecasting head,
and evaluate its performance on a target dataset without any fine-tuning (App D.1.2, Tab. 13).

Datasets. We use the same datasets as TimesNet for forecasting and imputation. However, for classification and
anomaly detection, we conduct experiments on larger and systematically chosen subset of datasets from the UCR
classification archive Dau et al. [2018] and UCR anomaly archive Wu and Keogh [2023]. Specifically, we run
classification experiments on all 91 time-series datasets with each time-series shorter than 512 time steps (Tab.15). For
anomaly detection, while choosing the subset of time-series, we prioritized coverage over different domains and data
sources represented in the UCR anomaly archive (Tab. 14). We also note that the UCR anomaly archive was proposed
as an improvement over pre-existing anomaly detection datasets such as the SMD Su et al. [2019], and SMAP Hundman
et al. [2018], many of which are also used in TimesNet. Our proposed experimental setup is summarized in Tab. 1 and
detailed in App. D.

Metrics. We evaluate each experiment using multiple metrics used in task-specific benchmarks, such as MSE and MAE
for long-horizon forecasting, and sMAPE for short-horizon forecasting. We also note that TimesNet and GPT4TS Zhou
et al. [2023] evaluate anomaly detection performance using vanilla F1 score which ignores the sequential nature of

6

MOMENT0 GPT4TS TimesNet TS2Vec T-Loss TNC TS-TCC TST CNN Encoder FCN MCNN MLP ResNet t-LeNet TWIESN DTW
Mean 0.794 0.567 0.573 0.852 0.833 0.793 0.793 0.659 0.752 0.743 0.810 0.702 0.750 0.826 0.348 0.727 0.764

Median 0.815 0.583 0.565 0.871 0.849 0.802 0.802 0.720 0.773 0.753 0.837 0.718 0.767 0.853 0.333 0.725 0.768
Std. 0.148 0.235 0.238 0.134 0.137 0.176 0.176 0.221 0.180 0.160 0.188 0.195 0.169 0.178 0.222 0.164 0.153

Table 4: Classification accuracy of methods across 91 UCR datasets. Methods with mean and median accuracy
higher than MOMENT are in bold. MOMENT without fine-tuning on individual datasets demonstrates promising accuracy.
Complete results in Tab. 15.

0.150.100.050.000.050.100.150.20

0.10
0.05
0.00
0.05
0.10
0.15
0.20
0.25

y = xc + sin(32 x) +

0.125

1.125

2.125

3.125

4.125

5.125

6.125

7.125

8.125

0.0 0.2 0.4 0.6 0.8

0.1

0.0

0.1

0.2

y = c * sin(32 x) +

0.25

1.25

2.25

3.25

4.25

0.8 0.6 0.4 0.20.0 0.2 0.4 0.6 0.8

0.4

0.2

0.0

0.2

0.4

0.6

y = sin(2c x) +

1

5

9

13

17

21

25

29

0.150.100.050.000.050.100.150.20

0.10

0.05

0.00

0.05

0.10

y = c + sin(32 x) +

2

1

0

1

2

0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8
0.3

0.2

0.1

0.0

0.1

0.2

0.3

f = 1

f = 2

f = 3

f = 5

y = sin(2 fx + c) + , c [0, 2]

0

1

2

3

4

5

6

7

(i) Trend (ii) Amplitude (iii) Frequency (iv) Baseline Shift (v) Phase

Figure 4: What is MOMENT learning? Principal components of the embeddings of synthetically generated sinusoids
suggest that MOMENT can capture subtle trend, scale, frequency, and phase information. In each experiment, c controls
the factor of interest, for example the power of the trend polynomial c ∈ (18 , 8) Oreshkin et al. [2020] (Fig. 8), and
frequency c ∈ (1, 32) of the generated sine waves (Fig. 8). We generate multiple sine waves by varying c, derive their
sequence-level representations using MOMENT, and visualize them in a 2- dimensional space using PCA and t-SNE
van der Maaten [2014] in Fig. 4 and Fig. 6.

time-series. Instead, we measure anomaly detection performance with the widely used adjusted best F1 score Goswami
et al. [2023], Challu et al. [2022], and the recently proposed VUS-ROC Paparrizos et al. [2022b].

Baselines. We compare MOMENT with state-of-the-art deep learning and statistical machine learning models across
tasks (Tab. 23). This is in contrast to TimesNet which primarily compared with transformer-based approaches. These
comparisons are crucial for assessing the practical utility of the proposed methods. We found that statistical and
non-transformer-based approaches like ARIMA for short-horizon forecasting, N-BEATS for long-horizon forecasting,
and k-nearest neighbors for anomaly detection outperform many deep and transformer-based models.

Hyper-parameter tuning. We do not perform hyper-parameter tuning. In all experiments that follow, unless
mentioned otherwise, we fine-tune MOMENT-Large with a batch size of 64, and one cycle learning rate schedule with a
peak learning rate between 5e− 5 and 1e− 3 Smith and Topin [2019]. For baseline methods, we capture recommended
settings from their papers and public repositories. We report all hyper-parameters settings for MOMENT and baselines in
App. D.

Research questions. Through the following experiments we aim to answer 3 broad research questions.

RQ1: Effectiveness. Is MOMENT effective for multiple time-series analysis tasks in limited supervision settings?

RQ2: Interpretability. What is MOMENT learning? Does it capture intuitive time-series characteristics such as varying
frequencies, trends, and amplitudes?

RQ3: Properties. What is the impact of the size of scaling model size? Can MOMENT, akin to LLMs, be used for
cross-modal transfer learning?

4.1 MOMENT can solve multiple time-series modeling tasks in limited supervision settings

Long-horizon forecasting. Linearly probing MOMENT achieves near state-of-the-art performance on most datasets
and horizons, and is only second to PatchTST which generally achieves the lowest MSE (Tab. 2). On many datasets
and horizons, forecasting models based on LLMs– TimeLLM and GPT4TS perform worse than MOMENT. Notably,
N-BEATS outperforms several recent methods, emphasizing the importance of comparing forecasting performance
beyond transformer-based approaches.

Zero-shot short-horizon forecasting. Among all tasks, we found zero-shot short-horizon forecasting to have the largest
scope for improvement (Tab. 3). Statistical methods such as Theta and ETS outperformed their deeper counterparts.
However, on some datasets, MOMENT achieved lower sMAPE than ARIMA.

7

Dataset MOMENT0 MOMENTLP GPT4TS TimesNet Naive Linear Nearest Cubic
MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Weather 0.082 0.130 0.035 0.075 0.031 0.071 0.036 0.098 0.119 0.108 0.065 0.067 0.083 0.078 0.601 0.153
ETTh1 0.402 0.403 0.139 0.234 0.227 0.254 0.175 0.264 1.185 0.658 0.775 0.534 0.900 0.579 2.178 0.916
ETTh2 0.125 0.238 0.061 0.159 0.109 0.213 0.170 0.286 0.225 0.304 0.135 0.234 0.166 0.252 1.920 0.641
ETTm1 0.202 0.288 0.074 0.168 0.076 0.146 0.087 0.198 0.455 0.365 0.165 0.229 0.230 0.260 0.858 0.494
ETTm2 0.078 0.184 0.031 0.108 0.052 0.133 0.112 0.220 0.113 0.191 0.062 0.138 0.079 0.152 0.534 0.356

Electricity 0.250 0.371 0.094 0.211 0.072 0.183 0.124 0.248 1.474 0.869 0.737 0.592 0.923 0.629 2.257 0.888

Table 6: Imputation Results. MOMENT with linear probing achieved the lowest reconstruction error on all ETT datasets.
In the zero-shot setting, MOMENT consistently outperformed all statistical interpolation methods with the exception of
linear interpolation. Complete results in Tab. 20.

Metric MOMENT0 MOMENTLP GPT4TS TimesNet Anomaly
Transformer DGHL k-NN

Adj. F1

Mean 0.636 0.679 0.444 0.562 0.463 0.412 0.580
Median 0.704 0.842 0.314 0.529 0.400 0.340 0.670

Std. 0.352 0.338 0.366 0.366 0.394 0.334 0.377

VUS
ROC

Mean 0.683 0.715 0.612 0.703 0.664 0.678 0.726
Median 0.701 0.724 0.604 0.710 0.681 0.690 0.736

Std. 0.129 0.125 0.123 0.126 0.125 0.141 0.110

Table 7: Anomaly detection performance averaged over 44 time-series from the UCR Anomaly Archive. MOMENTLP
achieves near state-of-the-art anomaly detection results. Complete results in Tab. 14.

Model Bit Memory MNIST CIFAR-10 IMDb
GPT-2 1.000 0.975 0.711 0.867

Flan-T5 1.000 0.987 0.672 0.861
MOMENT 1.000 0.982 0.620 0.872

Table 5: Cross-modal transfer experiments. Accuracy
measured on the test set, from the checkpoint with the lowest
train loss. Even with frozen self-attention and feed-forward
layers, MOMENT is able to model cross-modal sequences on
par with GPT-2 and Flan-T5 models of similar scale.

Classification. Without any data-specific fine-tuning,
MOMENT can learn distinct representations for different
classes of data (Fig. 5a), and an SVM trained on its
representations, performs better than all but 4 methods
specifically built for time-series classification models and
trained on each individual dataset. Recently proposed
GPT4TS and TimesNet perform poorly despite being
trained on each individual dataset with labels.

Anomaly detection. On 44 time-series from the UCR
anomaly detection archive, MOMENT consistently outper-
formed both TimesNet and GPT4TS, as well as 2 state-
of-the-art deep learning models tailored for anomaly detection, in both zero-shot and linear probing configurations.
However, k-nearest neighbors performed marginally better in terms of VUS-ROC score, but had a lower adjusted best
F1 score

Imputation. Tab. 6 contains imputation performance of all models averaged over 4 different masking rates. MOMENT
with linear probing achieved the lowest reconstruction error on all ETT datasets. In the zero-shot setting, MOMENT
consistently outperformed all statistical interpolation methods with the exception of linear interpolation.

4.2 What is MOMENT Learning?

We found that MOMENT can capture changes in intuitive time-series characteristics such as trend, amplitude, frequencies,
and phases of time-series. However, it cannot differentiate between vertically shifted time-series as it normalizes each
signal prior to modeling (Fig. 4,6). Furthermore, on many classification datasets, MOMENT learns distinct representations
of different classes, even in a zero-shot setting without access to labels (Fig. 5a, 7).

4.3 Properties of Large Time-series Models

Model scaling improves training loss. Like LLMs, we found that increasing the size of the model leads to lower
training loss, even before the first epoch (Fig. 5b, left). An immediate next step is to assess how effectively this
phenomenon extends to time-series modeling tasks under limited supervision.

MOMENT can solve cross-modal sequence learning tasks. Lu et al. [2022] first showed that large pre-trained language
and vision transformers can solve general sequence learning tasks for modalities outside of text and images with
minimal fine-tuning. Several recent studies have leveraged these properties to reprogram LLMs for time-series tasks.

8

Crop
ElectricDevices ECG5000

(a) PCA and t-SNE visualizations of representations learned by
MOMENT on the 3 largest UCR datasets. Different colors repre-
sent different classes. Even without dataset-specific fine-tuning,
MOMENT learns distinct representations for different classes.

0 2 4 6 8 10
Processed patches (in Billions)

0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20

Tr
ai

ni
ng

 L
os

s

 40M Small
125M Base
385M Large

0 2 4 6 8 10
Processed patches (in Billions)

0.08

0.10

0.12

0.14

0.16

0.18

0.20

Tr
ai

ni
ng

 L
os

s

Small (Flan-T5)
Small (Random)

(b) Training losses (MSE). A dashed vertical line denotes the
first epoch. All models were trained with a batch size of 131072
patches. (left) Larger models obtain lower training loss. right
Eventually, randomly initialized MOMENT-small outperform the
same model initialized with Flan-T5 weights.

We explore whether transformers pre-trained on time-series can also be used to solve sequence classification tasks on
image, text, and binary data. Our results confirm that by freezing the self-attention and feed-forward layers, MOMENT
can model sequences comparable to GPT-2 and Flan-T5 models of similar scale (Tab. 5).

MOMENT with randomly initialized weights converges to a lower training loss. Our observations suggest that with
sufficient data, pre-training our model from scratch results in a lower training loss than continually pre-training a model
of similar size initialized with language modeling weights (Fig. 5b, 11). This also underscores that there is sufficient
publicly accessible pre-training data available in the Time-series Pile to facilitate pre-training time-series foundation
models from scratch.

5 Conclusion and Future Work

We release the first open-source family of time-series foundation models and make contributions at all stages of the
development and evaluation process. We first compile a large and diverse collection of public time-series, called the
Time-series Pile, and demonstrate its efficacy by pre-training high-performing time-series foundation models from
scratch. Then, we systematically address several time-series-specific challenges, which have hitherto hindered extensive
exploration of large-scale multi-dataset pre-training. We use the Time-series Pile and these strategies to pre-train
transformer models of three different sizes. Finally, we design an experimental benchmark to evaluate time-series
foundation models on multiple practical time-series tasks, particularly focusing on scenarios with constrained compute
and supervision, building on prior work by Wu et al. [2023]. Using this benchmark, we show that MOMENT is effective
for the considered tasks with minimal fine-tuning. MOMENT’s superior performance, especially on anomaly detection and
classification problems which typically have small datasets, can be attributed to pre-training. Moreover, we demonstrate
that across many tasks, smaller statistical and shallower deep learning methods perform reasonably well. Lastly, we
make several interesting empirical observations about time-series foundation models. Our overarching goal is to push
the boundaries of open science by publicly releasing the Time-series Pile, along with code, model weights, and training
logs.

We note several interesting directions of future work, including the application of MOMENT to real-world challenges, in-
vestigating multi-modal time-series and text foundation models Cai et al. [2023], and enhancing forecasting performance
by pre-training MOMENT using causal attention and forecasting objectives.

Acknowledgments

Discussions. We would like to express our sincerest gratitude to Barış Kurt, Andrey Kan, Laurent Callot, Gauthier
Guinet, Jingchao Ni, and Jonas M. Kübler for insightful discussions regarding the problem setting and experimental
design. Their unwavering support was instrumental in the development of MOMENT. We are also thankful to Laurent,
Barış, Jingchao and Andrey for their constructive feedback on the writing of this manuscript. Additionally, we
acknowledge the insightful exchanges with Yuyang (Bernie) Wang, Abdul Fatir Ansari, Ingo Guering, Xiyuan Zhang,
and Anoop Deoras. Special thanks to Cherie Ho for suggesting a creative and befitting name for our model.

Data. We extend our gratitude to the authors and data curators whose meticulous efforts were instrumental in curating
the datasets utilized for both pre-training and evaluation purposes: UCR Time-series Classification Archive Dau et al.
[2018], TSB-UAD Anomaly Benchmark Paparrizos et al. [2022a], Monash Forecasting Archive Godahewa et al. [2021],
and the long-horizon forecasting datasets Zhou et al. [2021].

9

Software and Models. Our training and evaluation library was inspired from Time-Series-Library. We would
also like to thank the authors of the following libraries for their implementations: universal-computation,
Anomaly-Transformer, VUS, tsad-model-selection, One-Fits-All and Statsforecast.

Reproducibility statement

All models were trained and evaluated on a computing cluster consisting of 128 AMD EPYC 7502 CPUs, 503 GB of
RAM, and 8 NVIDIA RTX A6000 GPUs each with 49 GiB RAM. All MOMENT variants were trained on a single A6000
GPU (with any data or model parallelism). We will release all our model artifacts (MOMENT-small, MOMENT-base,
and MOMENT-large) upon acceptance. We have made the code to compile TILE, pre-train and fine-tune MOMENT, and
reproduce our results anonymously available at https://anonymous.4open.science/r/BETT-773F/README.md.
We enlist an exhaustive list of hyper-parameters in App. D to aid reproducibility. We would like to emphasize that all
datasets used in this study are publicly available.

Impact statement

Transparency Index. Given the exponential rise in societal reliance on large foundation models, ensuring transparency
in their training approach, architecture, and downstream application is crucial for public accountability, scientific
advancement, and effective governance. o uphold this objective, we publicly release our training code base, data
sources, and evaluation pipeline. We assess the transparency of MOMENT using the criteria outlined by Bommasani
et al. [2023], focusing on upstream resources utilized during training and model description, encompassing 32 and
33 transparency indicators, respectively. We report expected upstream and model transparency scores for MOMENT in
Tab. 22. Notably, MOMENT is expected to have one of the highest levels of upstream transparency. However, it’s model
transparency scores are lower, primarily due to comprehensive (external and third-party) harm and trustworthiness
evaluations, which are not well understood in the context of time-series modeling.

Environmental Impact. We train multiple models over many days resulting in significant energy usage and a sizeable
carbon footprint. However, we hope that releasing our models will ensure that future time-series modeling efforts are
quicker and more efficient, resulting in lower carbon emissions.

We follow prior work Bender et al. [2021], Patterson et al. [2021], Touvron et al. [2023], Wu et al. [2022], Dodge et al.
[2022] and estimate the carbon footprint of pre-training all variants of MOMENT based on the GPU device used and the
carbon efficiency of the electricity grid. Our estimated CO2 generation estimates are shown in Tab. 8.

Model Variant # Parameters (M) GPU Hours Power Consumption (W) Carbon Emission (tCO2eq)

Small 40 308.378 300 31.136
Base 125 308.306 300 31.129
Large 385 404.389 300 40.831

Upper Bound Total - 1021.073 300 103.096

Actual Total - 712.767 300 71.967

Table 8: Total carbon emission induced upon training the MOMENT family of models. MOMENT-small and MOMENT-base
were trained simultaneously on a single GPU, thus the TGP required for each model would likely be much less than
300W, and the total time for both models combined is equal to the maximum of the time required for each model.
Actual total power consumption and carbon emission values account for this.

We use the Total Graphics Power (TGP) to calculate the total power consumed for training MOMENT models, although
the total power consumed by the GPU will likely vary a little based on the GPU utilization while training our model.
Our calculations do not account for power demands from other sources of our compute. We use 336.566 Kg C02/MWH
as the standard value of CO2 emission per megawatt hour of energy consumed for Pittsburgh10.

We share an upper limit of the individual CO2 emission for each model, as well as a more realistic actual estimate
for the carbon emissions from MOMENT-small and MOMENT-base, since they were trained simultaneously on a single
Nvidia RTX A6000 GPU, and thus the power consumed by the GPU was shared for the training of both variants.
MOMENT-large was trained independently on a single RTX A6000 GPU, and thus the carbon emissions for its
pre-training are decidedly more realistic.

10https://emissionsindex.org/

10

https://github.com/thuml/Time-Series-Library
https://github.com/kzl/universal-computation
https://github.com/thuml/Anomaly-Transformer
https://github.com/TheDatumOrg/VUS
https://github.com/mononitogoswami/tsad-model-selection
https://github.com/DAMO-DI-ML/NeurIPS2023-One-Fits-All
https://github.com/Nixtla/statsforecast
https://anonymous.4open.science/r/BETT-773F/README.md

Ethical considerations and potential misuse. Despite MOMENT’s promising performance in limited-data settings, it is
important to use its predictions with care, especially in high-stakes settings such as healthcare. Before MOMENT is used
for high-stakes decision-making, we recommend fine-tuning and evaluating the model with task-specific in-domain
data.

References
Stephen H Schneider and Robert E Dickinson. Climate modeling. Reviews of Geophysics, 12(3):447–493, 1974.
Mononito Goswami, Benedikt Boecking, and Artur Dubrawski. Weak supervision for affordable modeling of electro-

cardiogram data. In AMIA Annual Symposium Proceedings, volume 2021, page 536. American Medical Informatics
Association, 2021.

Haowen Xu, Wenxiao Chen, Nengwen Zhao, Zeyan Li, Jiahao Bu, Zhihan Li, Ying Liu, Youjian Zhao, Dan Pei, Yang
Feng, et al. Unsupervised anomaly detection via variational auto-encoder for seasonal kpis in web applications. In
Proceedings of the 2018 world wide web conference, pages 187–196, 2018.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov,
Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen,
Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj
Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor
Kerkez, Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril,
Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra, Igor
Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva,
Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang
Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien
Rodriguez, Robert Stojnic, Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat
models, 2023.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep bidirectional
transformers for language understanding. In Jill Burstein, Christy Doran, and Thamar Solorio, editors, Proceedings
of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Papers), pages 4171–4186, Minneapolis, Minnesota, June 2019.
Association for Computational Linguistics. doi: 10.18653/v1/N19-1423. URL https://aclanthology.org/
N19-1423.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi Wang,
Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned language models. arXiv preprint
arXiv:2210.11416, 2022.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image pre-training with frozen
image encoders and large language models. arXiv preprint arXiv:2301.12597, 2023a.

Kastan Day, Daniel Christl, Rohan Salvi, and Pranav Sriram. Video pre-trained transformer: A multimodal mixture of
pre-trained experts, 2023.

Tian Zhou, Peisong Niu, Xue Wang, Liang Sun, and Rong Jin. One fits all: Power general time series analysis by
pretrained LM. In Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https:
//openreview.net/forum?id=gMS6FVZvmF.

Nate Gruver, Marc Anton Finzi, Shikai Qiu, and Andrew Gordon Wilson. Large language models are zero-shot
time series forecasters. In Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL
https://openreview.net/forum?id=md68e8iZK1.

Ming Jin, Shiyu Wang, Lintao Ma, Zhixuan Chu, James Y. Zhang, Xiaoming Shi, Pin-Yu Chen, Yuxuan Liang,
Yuan-Fang Li, Shirui Pan, and Qingsong Wen. Time-llm: Time series forecasting by reprogramming large language
models, 2023.

Vijay Ekambaram, Arindam Jati, Nam H. Nguyen, Pankaj Dayama, Chandra Reddy, Wesley M. Gifford, and Jayant
Kalagnanam. Tiny time mixers (ttms): Fast pre-trained models for enhanced zero/few-shot forecasting of multivariate
time series, 2024.

Defu Cao, Furong Jia, Sercan O Arik, Tomas Pfister, Yixiang Zheng, Wen Ye, and Yan Liu. Tempo: Prompt-based
generative pre-trained transformer for time series forecasting, 2023.

Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Timesnet: Temporal 2d-variation
modeling for general time series analysis. In The Eleventh International Conference on Learning Representations,
2023. URL https://openreview.net/forum?id=ju_Uqw384Oq.

11

https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423
https://openreview.net/forum?id=gMS6FVZvmF
https://openreview.net/forum?id=gMS6FVZvmF
https://openreview.net/forum?id=md68e8iZK1
https://openreview.net/forum?id=ju_Uqw384Oq

Boris N. Oreshkin, Dmitri Carpov, Nicolas Chapados, and Yoshua Bengio. Meta-learning framework with applications
to zero-shot time-series forecasting. Proceedings of the AAAI Conference on Artificial Intelligence, 35(10):9242–
9250, May 2021. doi: 10.1609/aaai.v35i10.17115. URL https://ojs.aaai.org/index.php/AAAI/article/
view/17115.

Jyoti Narwariya, Pankaj Malhotra, Lovekesh Vig, Gautam Shroff, and T. V. Vishnu. Meta-learning for few-shot
time series classification. In Proceedings of the 7th ACM IKDD CoDS and 25th COMAD, CoDS COMAD 2020,
page 28–36, New York, NY, USA, 2020. Association for Computing Machinery. ISBN 9781450377386. doi:
10.1145/3371158.3371162. URL https://doi.org/10.1145/3371158.3371162.

Qingsong Wen, Tian Zhou, Chaoli Zhang, Weiqi Chen, Ziqing Ma, Junchi Yan, and Liang Sun. Transformers in time
series: A survey. In Edith Elkind, editor, Proceedings of the Thirty-Second International Joint Conference on Artificial
Intelligence, IJCAI-23, pages 6778–6786. International Joint Conferences on Artificial Intelligence Organization, 8
2023. doi: 10.24963/ijcai.2023/759. URL https://doi.org/10.24963/ijcai.2023/759. Survey Track.

Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth 64 words: Long-term
forecasting with transformers. In The Eleventh International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=Jbdc0vTOcol.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and
Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text transformer. Journal of Machine
Learning Research, 21(140):1–67, 2020. URL http://jmlr.org/papers/v21/20-074.html.

Zhenda Xie, Zheng Zhang, Yue Cao, Yutong Lin, Jianmin Bao, Zhuliang Yao, Qi Dai, and Han Hu. Simmim: a simple
framework for masked image modeling. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pages 9643–9653, 2022. doi: 10.1109/CVPR52688.2022.00943.

Y. Li, H. Fan, R. Hu, C. Feichtenhofer, and K. He. Scaling language-image pre-training via masking. In 2023
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 23390–23400, Los Alamitos,
CA, USA, jun 2023b. IEEE Computer Society. doi: 10.1109/CVPR52729.2023.02240. URL https://doi.
ieeecomputersociety.org/10.1109/CVPR52729.2023.02240.

Zhihan Yue, Yujing Wang, Juanyong Duan, Tianmeng Yang, Congrui Huang, Yunhai Tong, and Bixiong Xu. Ts2vec:
Towards universal representation of time series. Proceedings of the AAAI Conference on Artificial Intelligence, 36
(8):8980–8987, Jun. 2022. doi: 10.1609/aaai.v36i8.20881. URL https://ojs.aaai.org/index.php/AAAI/
article/view/20881.

Emadeldeen Eldele, Mohamed Ragab, Zhenghua Chen, Min Wu, Chee Keong Kwoh, Xiaoli Li, and Cuntai Guan.
Time-series representation learning via temporal and contextual contrasting. In Zhi-Hua Zhou, editor, Proceedings of
the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI-21, pages 2352–2359. International
Joint Conferences on Artificial Intelligence Organization, 8 2021. doi: 10.24963/ijcai.2021/324. URL https:
//doi.org/10.24963/ijcai.2021/324. Main Track.

Jean-Yves Franceschi, Aymeric Dieuleveut, and Martin Jaggi. Unsupervised scalable representation learn-
ing for multivariate time series. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32. Cur-
ran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/file/
53c6de78244e9f528eb3e1cda69699bb-Paper.pdf.

George Zerveas, Srideepika Jayaraman, Dhaval Patel, Anuradha Bhamidipaty, and Carsten Eickhoff. A transformer-
based framework for multivariate time series representation learning. In Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery & Data Mining, KDD ’21, page 2114–2124, New York, NY, USA, 2021.
Association for Computing Machinery. ISBN 9781450383325. doi: 10.1145/3447548.3467401. URL https:
//doi.org/10.1145/3447548.3467401.

Jiaxiang Dong, Haixu Wu, Haoran Zhang, Li Zhang, Jianmin Wang, and Mingsheng Long. Simmtm: A simple
pre-training framework for masked time-series modeling. In Advances in Neural Information Processing Systems,
2023.

Zhe Li, Zhongwen Rao, Lujia Pan, Pengyun Wang, and Zenglin Xu. Ti-mae: Self-supervised masked time series
autoencoders, 2023c.

Kevin Lu, Aditya Grover, Pieter Abbeel, and Igor Mordatch. Frozen pretrained transformers as universal computation
engines. Proceedings of the AAAI Conference on Artificial Intelligence, 36(7):7628–7636, Jun. 2022. doi: 10.1609/
aaai.v36i7.20729. URL https://ojs.aaai.org/index.php/AAAI/article/view/20729.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason Phang, Horace He, Anish
Thite, Noa Nabeshima, Shawn Presser, and Connor Leahy. The pile: An 800gb dataset of diverse text for language
modeling, 2020.

12

https://ojs.aaai.org/index.php/AAAI/article/view/17115
https://ojs.aaai.org/index.php/AAAI/article/view/17115
https://doi.org/10.1145/3371158.3371162
https://doi.org/10.24963/ijcai.2023/759
https://openreview.net/forum?id=Jbdc0vTOcol
http://jmlr.org/papers/v21/20-074.html
https://doi.ieeecomputersociety.org/10.1109/CVPR52729.2023.02240
https://doi.ieeecomputersociety.org/10.1109/CVPR52729.2023.02240
https://ojs.aaai.org/index.php/AAAI/article/view/20881
https://ojs.aaai.org/index.php/AAAI/article/view/20881
https://doi.org/10.24963/ijcai.2021/324
https://doi.org/10.24963/ijcai.2021/324
https://proceedings.neurips.cc/paper_files/paper/2019/file/53c6de78244e9f528eb3e1cda69699bb-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/53c6de78244e9f528eb3e1cda69699bb-Paper.pdf
https://doi.org/10.1145/3447548.3467401
https://doi.org/10.1145/3447548.3467401
https://ojs.aaai.org/index.php/AAAI/article/view/20729

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet Large Scale Visual Recognition Chal-
lenge. International Journal of Computer Vision (IJCV), 115(3):211–252, 2015. doi: 10.1007/s11263-015-0816-y.

Qianli Ma, Zhen Liu, Zhenjing Zheng, Ziyang Huang, Siying Zhu, Zhongzhong Yu, and James T. Kwok. A survey on
time-series pre-trained models, 2023.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang. Informer: Beyond
efficient transformer for long sequence time-series forecasting. Proceedings of the AAAI Conference on Artificial
Intelligence, 35(12):11106–11115, May 2021. doi: 10.1609/aaai.v35i12.17325. URL https://ojs.aaai.org/
index.php/AAAI/article/view/17325.

Cristian Challu, Kin G. Olivares, Boris N. Oreshkin, Federico Garza Ramirez, Max Mergenthaler Canseco, and
Artur Dubrawski. NHITS: Neural hierarchical interpolation for time series forecasting. Proceedings of the AAAI
Conference on Artificial Intelligence, 37(6):6989–6997, Jun. 2023. doi: 10.1609/aaai.v37i6.25854. URL https:
//ojs.aaai.org/index.php/AAAI/article/view/25854.

Artur Trindade. ElectricityLoadDiagrams20112014. UCI Machine Learning Repository, 2015. DOI:
https://doi.org/10.24432/C58C86.

California Department of Transportation. Performance measurement system (pems), 2024. URL http://pems.dot.
ca.gov/. Accessed: 2024-02-01.

Max Planck Institute for Biogeochemistry. Weather data, 2024. URL https://www.bgc-jena.mpg.de/wetter/.
Accessed: 2024-02-01.

Centers for Disease Control and Prevention. Fluview: Flu activity & surveillance, 2024. URL https://gis.cdc.
gov/grasp/fluview/fluportaldashboard.html. Accessed: 2024-02-01.

Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. Modeling long- and short-term temporal patterns with
deep neural networks. In The 41st International ACM SIGIR Conference on Research & Development in Information
Retrieval, SIGIR ’18, page 95–104, New York, NY, USA, 2018. Association for Computing Machinery. ISBN
9781450356572. doi: 10.1145/3209978.3210006. URL https://doi.org/10.1145/3209978.3210006.

Rakshitha Wathsadini Godahewa, Christoph Bergmeir, Geoffrey I. Webb, Rob Hyndman, and Pablo Montero-Manso.
Monash time series forecasting archive. In Thirty-fifth Conference on Neural Information Processing Systems
Datasets and Benchmarks Track (Round 2), 2021. URL https://openreview.net/forum?id=wEc1mgAjU-.

Hoang Anh Dau, Eamonn Keogh, Kaveh Kamgar, Chin-Chia Michael Yeh, Yan Zhu, Shaghayegh Gharghabi, Choti-
rat Ann Ratanamahatana, Yanping, Bing Hu, Nurjahan Begum, Anthony Bagnall, Abdullah Mueen, Gustavo Batista,
and Hexagon-ML. The ucr time series classification archive, October 2018. https://www.cs.ucr.edu/~eamonn/
time_series_data_2018/.

Hassan Ismail Fawaz, Germain Forestier, Jonathan Weber, Lhassane Idoumghar, and Pierre-Alain Muller. Deep learning
for time series classification: a review. Data Mining and Knowledge Discovery, 33(4):917–963, 2019.

John Paparrizos, Yuhao Kang, Paul Boniol, Ruey S. Tsay, Themis Palpanas, and Michael J. Franklin. Tsb-uad: An end-to-
end benchmark suite for univariate time-series anomaly detection. Proc. VLDB Endow., 15(8):1697–1711, apr 2022a.
ISSN 2150-8097. doi: 10.14778/3529337.3529354. URL https://doi.org/10.14778/3529337.3529354.

Taesung Kim, Jinhee Kim, Yunwon Tae, Cheonbok Park, Jang-Ho Choi, and Jaegul Choo. Reversible instance
normalization for accurate time-series forecasting against distribution shift. In International Conference on Learning
Representations, 2022. URL https://openreview.net/forum?id=cGDAkQo1C0p.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz Kaiser,
and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fer-
gus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 30.
Curran Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization, 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages 770–778, 2016. doi: 10.1109/CVPR.2016.90.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-attention with relative position representations. arXiv preprint
arXiv:1803.02155, 2018.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Conference on Learning
Representations, 2019. URL https://openreview.net/forum?id=Bkg6RiCqY7.

13

https://ojs.aaai.org/index.php/AAAI/article/view/17325
https://ojs.aaai.org/index.php/AAAI/article/view/17325
https://ojs.aaai.org/index.php/AAAI/article/view/25854
https://ojs.aaai.org/index.php/AAAI/article/view/25854
http://pems.dot.ca.gov/
http://pems.dot.ca.gov/
https://www.bgc-jena.mpg.de/wetter/
https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html
https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html
https://doi.org/10.1145/3209978.3210006
https://openreview.net/forum?id=wEc1mgAjU-
https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
https://doi.org/10.14778/3529337.3529354
https://openreview.net/forum?id=cGDAkQo1C0p
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://openreview.net/forum?id=Bkg6RiCqY7

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda
Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever. Learning transferable visual models
from natural language supervision. In Marina Meila and Tong Zhang, editors, Proceedings of the 38th International
Conference on Machine Learning, volume 139 of Proceedings of Machine Learning Research, pages 8748–8763.
PMLR, 18–24 Jul 2021. URL https://proceedings.mlr.press/v139/radford21a.html.

R. Wu and E. J. Keogh. Current time series anomaly detection benchmarks are flawed and are creating the illusion of
progress. IEEE Transactions on Knowledge & Data Engineering, 35(03):2421–2429, mar 2023. ISSN 1558-2191.
doi: 10.1109/TKDE.2021.3112126.

Ya Su, Youjian Zhao, Chenhao Niu, Rong Liu, Wei Sun, and Dan Pei. Robust anomaly detection for multivariate
time series through stochastic recurrent neural network. In Proceedings of the 25th ACM SIGKDD international
conference on knowledge discovery & data mining, pages 2828–2837, 2019.

Kyle Hundman, Valentino Constantinou, Christopher Laporte, Ian Colwell, and Tom Soderstrom. Detecting space-
craft anomalies using lstms and nonparametric dynamic thresholding. In Proceedings of the 24th ACM SIGKDD
international conference on knowledge discovery & data mining, pages 387–395, 2018.

Mononito Goswami, Cristian Ignacio Challu, Laurent Callot, Lenon Minorics, and Andrey Kan. Unsupervised model
selection for time series anomaly detection. In The Eleventh International Conference on Learning Representations,
2023. URL https://openreview.net/forum?id=gOZ_pKANaPW.

Cristian I. Challu, Peihong Jiang, Ying Nian Wu, and Laurent Callot. Deep generative model with hierarchical latent
factors for time series anomaly detection. In Gustau Camps-Valls, Francisco J. R. Ruiz, and Isabel Valera, editors,
Proceedings of The 25th International Conference on Artificial Intelligence and Statistics, volume 151 of Proceedings
of Machine Learning Research, pages 1643–1654. PMLR, 28–30 Mar 2022. URL https://proceedings.mlr.
press/v151/challu22a.html.

John Paparrizos, Paul Boniol, Themis Palpanas, Ruey S. Tsay, Aaron Elmore, and Michael J. Franklin. Volume under
the surface: A new accuracy evaluation measure for time-series anomaly detection. Proc. VLDB Endow., 15(11):
2774–2787, jul 2022b. ISSN 2150-8097. doi: 10.14778/3551793.3551830. URL https://doi.org/10.14778/
3551793.3551830.

Leslie N Smith and Nicholay Topin. Super-convergence: Very fast training of neural networks using large learning
rates. In Artificial intelligence and machine learning for multi-domain operations applications, volume 11006, pages
369–386. SPIE, 2019.

Boris N. Oreshkin, Dmitri Carpov, Nicolas Chapados, and Yoshua Bengio. N-beats: Neural basis expansion analysis
for interpretable time series forecasting. In International Conference on Learning Representations, 2020. URL
https://openreview.net/forum?id=r1ecqn4YwB.

Laurens van der Maaten. Accelerating t-sne using tree-based algorithms. Journal of Machine Learning Research, 15
(93):3221–3245, 2014. URL http://jmlr.org/papers/v15/vandermaaten14a.html.

Yifu Cai, Mononito Goswami, Arjun Choudhry, Arvind Srinivasan, and Artur Dubrawski. Jolt: Jointly learned
representations of language and time-series. In Deep Generative Models for Health Workshop NeurIPS 2023, 2023.

Rishi Bommasani, Kevin Klyman, Shayne Longpre, Sayash Kapoor, Nestor Maslej, Betty Xiong, Daniel Zhang, and
Percy Liang. The foundation model transparency index, 2023.

Emily M. Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret Shmitchell. On the dangers of stochastic
parrots: Can language models be too big? In Proceedings of the 2021 ACM Conference on Fairness, Accountability,
and Transparency, FAccT ’21, page 610–623, New York, NY, USA, 2021. Association for Computing Machinery.
ISBN 9781450383097. doi: 10.1145/3442188.3445922. URL https://doi.org/10.1145/3442188.3445922.

David Patterson, Joseph Gonzalez, Quoc Le, Chen Liang, Lluis-Miquel Munguia, Daniel Rothchild, David So, Maud
Texier, and Jeff Dean. Carbon emissions and large neural network training, 2021.

Carole-Jean Wu, Ramya Raghavendra, Udit Gupta, Bilge Acun, Newsha Ardalani, Kiwan Maeng, Gloria Chang,
Fiona Aga Behram, James Huang, Charles Bai, Michael Gschwind, Anurag Gupta, Myle Ott, Anastasia Melnikov,
Salvatore Candido, David Brooks, Geeta Chauhan, Benjamin Lee, Hsien-Hsin S. Lee, Bugra Akyildiz, Maximilian
Balandat, Joe Spisak, Ravi Jain, Mike Rabbat, and Kim Hazelwood. Sustainable ai: Environmental implications,
challenges and opportunities, 2022.

Jesse Dodge, Taylor Prewitt, Remi Tachet des Combes, Erika Odmark, Roy Schwartz, Emma Strubell, Alexandra Sasha
Luccioni, Noah A. Smith, Nicole DeCario, and Will Buchanan. Measuring the carbon intensity of ai in cloud
instances. In Proceedings of the 2022 ACM Conference on Fairness, Accountability, and Transparency, FAccT ’22,
page 1877–1894, New York, NY, USA, 2022. Association for Computing Machinery. ISBN 9781450393522. doi:
10.1145/3531146.3533234. URL https://doi.org/10.1145/3531146.3533234.

14

https://proceedings.mlr.press/v139/radford21a.html
https://openreview.net/forum?id=gOZ_pKANaPW
https://proceedings.mlr.press/v151/challu22a.html
https://proceedings.mlr.press/v151/challu22a.html
https://doi.org/10.14778/3551793.3551830
https://doi.org/10.14778/3551793.3551830
https://openreview.net/forum?id=r1ecqn4YwB
http://jmlr.org/papers/v15/vandermaaten14a.html
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3531146.3533234

Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition transformers with auto-
correlation for long-term series forecasting. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan,
editors, Advances in Neural Information Processing Systems, 2021. URL https://openreview.net/forum?id=
I55UqU-M11y.

Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. FEDformer: Frequency enhanced
decomposed transformer for long-term series forecasting. In Proc. 39th International Conference on Machine
Learning (ICML 2022), 2022.

Shizhan Liu, Hang Yu, Cong Liao, Jianguo Li, Weiyao Lin, Alex X. Liu, and Schahram Dustdar. Pyraformer: Low-
complexity pyramidal attention for long-range time series modeling and forecasting. In International Conference on
Learning Representations, 2022. URL https://openreview.net/forum?id=0EXmFzUn5I.

Jiehui Xu, Haixu Wu, Jianmin Wang, and Mingsheng Long. Anomaly transformer: Time series anomaly detection
with association discrepancy. In International Conference on Learning Representations, 2022. URL https:
//openreview.net/forum?id=LzQQ89U1qm_.

Hangbo Bao, Li Dong, Songhao Piao, and Furu Wei. BEit: BERT pre-training of image transformers. In International
Conference on Learning Representations, 2022. URL https://openreview.net/forum?id=p-BhZSz59o4.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An
image is worth 16x16 words: Transformers for image recognition at scale. In International Conference on Learning
Representations, 2021. URL https://openreview.net/forum?id=YicbFdNTTy.

Sana Tonekaboni, Danny Eytan, and Anna Goldenberg. Unsupervised representation learning for time series with
temporal neighborhood coding. In International Conference on Learning Representations, 2021. URL https:
//openreview.net/forum?id=8qDwejCuCN.

Mariusz Zebik, Marcin Korytkowski, Rafal Angryk, and Rafał Scherer. Convolutional Neural Networks for Time Series
Classification, pages 635–642. Springer International Publishing, Cham, 2017. ISBN 978-3-319-59060-8. doi:
10.1007/978-3-319-59060-8_57. URL https://doi.org/10.1007/978-3-319-59060-8_57.

Joan Serrà, Santiago Pascual, and Alexandros Karatzoglou. Towards a universal neural network encoder for time
series. In International Conference of the Catalan Association for Artificial Intelligence, 2018. URL https:
//api.semanticscholar.org/CorpusID:13675490.

Zhiguang Wang, Weizhong Yan, and Tim Oates. Time series classification from scratch with deep neural networks: A
strong baseline. In 2017 International Joint Conference on Neural Networks (IJCNN), pages 1578–1585, 2017. doi:
10.1109/IJCNN.2017.7966039.

Zhicheng Cui, Wenlin Chen, and Yixin Chen. Multi-scale convolutional neural networks for time series classification,
2016.

Arthur Le Guennec, Simon Malinowski, and Romain Tavenard. Data Augmentation for Time Series Classification
using Convolutional Neural Networks. In ECML/PKDD Workshop on Advanced Analytics and Learning on Temporal
Data, Riva Del Garda, Italy, September 2016. URL https://shs.hal.science/halshs-01357973.

Pattreeya Tanisaro and Gunther Heidemann. Time series classification using time warping invariant echo state networks.
In 2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA), pages 831–836, 2016.
doi: 10.1109/ICMLA.2016.0149.

Sebastian Schmidl, Phillip Wenig, and Thorsten Papenbrock. Anomaly detection in time series: A comprehensive
evaluation. Proc. VLDB Endow., 15(9):1779–1797, may 2022. ISSN 2150-8097. doi: 10.14778/3538598.3538602.
URL https://doi.org/10.14778/3538598.3538602.

Sridhar Ramaswamy, Rajeev Rastogi, and Kyuseok Shim. Efficient algorithms for mining outliers from large data
sets. In Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, SIGMOD
’00, page 427–438, New York, NY, USA, 2000. Association for Computing Machinery. ISBN 1581132174. doi:
10.1145/342009.335437. URL https://doi.org/10.1145/342009.335437.

15

https://openreview.net/forum?id=I55UqU-M11y
https://openreview.net/forum?id=I55UqU-M11y
https://openreview.net/forum?id=0EXmFzUn5I
https://openreview.net/forum?id=LzQQ89U1qm_
https://openreview.net/forum?id=LzQQ89U1qm_
https://openreview.net/forum?id=p-BhZSz59o4
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=8qDwejCuCN
https://openreview.net/forum?id=8qDwejCuCN
https://doi.org/10.1007/978-3-319-59060-8_57
https://api.semanticscholar.org/CorpusID:13675490
https://api.semanticscholar.org/CorpusID:13675490
https://shs.hal.science/halshs-01357973
https://doi.org/10.14778/3538598.3538602
https://doi.org/10.1145/342009.335437

A Related Work

Transformers and Patching for Time-series Modeling. There is a growing body of work utilizing transformers for
various time-series analysis tasks, for example PatchTST Nie et al. [2023], Informer Zhou et al. [2021], Autoformer
Wu et al. [2021], FEDformer Zhou et al. [2022], Pyraformer Liu et al. [2022] for forecasting; Anomaly Transformer
Xu et al. [2022] for anomaly detection, and TST Zerveas et al. [2021], TS-TCC Eldele et al. [2021] for representation
learning.

One issue with applying transformers to time-series data is the complexity of the self-attention mechanism, which
grows quadratically with the size of input tokens (or length of time-series). Consequently, the primary focus of most
initial applications of transformers to time-series, especially for forecasting where longer look-back windows typically
improve performance, was to redesign the self-attention mechanism to reduce its complexity Zhou et al. [2021, 2022],
Liu et al. [2022]. Nie et al. [2023] demonstrated that treating time-series sub-sequences (or patches) as tokens instead of
individual time points is a simple, efficient yet effective mechanism for learning useful representations for forecasting.
The authors drew inspiration from language and vision domains where sub-words (vs. characters) Devlin et al. [2019]
and 2-D patches (vs. raw pixels) Bao et al. [2022], Dosovitskiy et al. [2021] are used as inputs to transformers.
Drawing inspiration from prior work, we build on top of the transformer architecture which takes disjoint time-series
sub-sequences (or patches) as input.

Masked Representation Learning. Masked pre-training is a widely-used self-supervised learning task where a model
learns to accurately reconstruct masked portions of its input. Masked language Devlin et al. [2019], Raffel et al. [2020]
and image modeling Xie et al. [2022], Li et al. [2023b] have been successfully utilized to learn models from vast
quantities of unlabeled data, which can generalize to a variety of downstream tasks.

For time-series data, prior work has primarily focused on contrastive representation learning Yue et al. [2022], Eldele
et al. [2021], Franceschi et al. [2019]. The goal of contrastive learning is to learn a representation space where “positive”
pairs of time-series are close while “negative” pairs are far apart. However, the notion of positive and negative pairs
is subjective and data-dependent, and popular transformations such as flipping and cropping invariance may not be
appropriate for time-series data Yue et al. [2022]. In contrast, some studies mask portions of time-series using zeros and
learn a model to reconstruct them Nie et al. [2023], Zerveas et al. [2021], Dong et al. [2023], Li et al. [2023c].

Representation learning via masking is well-suited to all the downstream tasks we care about, especially forecasting
and imputation, as they are instances of the masked reconstruction problem. Owing to its simplicity and success in
vision and language domains, we use the masked prediction task to pre-train our model, using a special embedding (see
[MASK] in Fig. 3) to mask time-series patches instead of zeros.

Cross-modal transfer learning using language models. Lu et al. [2022] had first shown that transformers pre-trained
on text data (LLMs) can effectively solve sequence modeling tasks in other modalities. Some recent studies have
leveraged this inherent ability of language pre-trained transformers to “reprogram" LLMs for time-series analysis
using parameter efficient fine-tuning and suitable tokenization strategies Zhou et al. [2023], Gruver et al. [2023], Jin
et al. [2023], Cao et al. [2023], Ekambaram et al. [2024]. However, some of these models Jin et al. [2023], Gruver
et al. [2023] with billions of parameters demand significant memory and computational resources to perform well. We
complement this line of research with three empirical observations (Sec 4.3): we show that (1) transformers trained on
time-series can also model sequences across modalities, (2) during pre-training, randomly initializing weights lead to
lower pre-training loss, than initializing with language modeling weights, and (3) models pre-trained on time-series
outperform LLM-based models such as Zhou et al. [2023], Jin et al. [2023] on many tasks and datasets.

Unanswered Questions. To the best of our knowledge, two questions remain largely unanswered in prior work on
time-series modeling. First, all existing time-series models are (pre-)trained and fine-tuned on individual datasets Nie
et al. [2023], Yue et al. [2022], Wu et al. [2023], Zhou et al. [2023], and the benefits (or drawbacks) of large-scale
multi-dataset pre-training remains unexplored Wen et al. [2023]. Second, there is very limited work on time-series
modeling in limited supervision settings, such as zero-shot forecasting Oreshkin et al. [2021], or few-shot classification
Narwariya et al. [2020]. In our work, we consider both these questions and show that pre-training a model of sufficient
capacity on a large corpus of unlabeled time-series data can in fact enable it to provide reasonably accurate predictions
in limited-supervision settings.

B Interesting directions for future work

We note some interesting directions of future work:

• Study the impact of design choices such as the impact of the choice of the loss function (Huber, L1, L2), patch
length (4, 8), and masking percentage (0.3, 0.6) on pre-training loss and time-series modeling performance.

16

Task Dataset Channels Series Length Data Size (Train, Val, Test) Information (Frequency/Number of Classes)

Long
horizon

forecasting
(Informer)

ETTm1, ETTm2 7

{96, 720}

(33953, 11425, 11425) Electricity (15 mins)
ETTh1, ETTh2 7 (8033, 2785, 2785) Electricity (15 mins)

Electricity 321 (17805, 2537, 5165) Electricity (Hourly)
Traffic 862 (11673, 1661, 3413) Transportation (Hourly)

Weather 21 (36280, 5175, 10444) Weather (10 mins)
Exchange 8 (4704, 665, 1422) Exchange rate (Daily)

ILI 7 {24, 60} (69, 2, 98) Illness (Weekly)

Short
horizon

forecasting
(Monash)

M4-Yearly

1

6 (16099, 2301, 4600) -
M4-Quarterly 8 (16800, 2400, 4800) -
M4-Monthly 18 (33600, 4800, 9600) -
M3-Yearly 6 (451, 65, 129) -

M3-Quarterly 8 (529, 76, 151) -
M3-Monthly 18 (999, 144, 285) -

Imputation
(Informer)

ETTm1, ETTm2 7

512

(33953, 11425, 11425) Electricity (15 mins)
ETTh1, ETTh2 7 (8033, 2785, 2785) Electricity (15 mins)

Electricity 321 (17805, 2537, 5165) Electricity (Hourly)
Weather 21 (36280, 5175, 10444) Weather (10 mins)

Classification
(UCR)

UWaveGestureLibraryX

1

315 (640, 256, 3582) Motion Gesture (8 classes)
ECG5000 140 (357, 143, 4500) ECG Record (5 classes)
OSULeaf 427 (142, 58, 242) Leaf Outlines (6 classes)

MedicalImages 99 (272, 109, 760) Pixel Intensity (10 classes)
Ham 431 (77, 32, 105) Food spectrographs (2 classes)

Anomaly
detection

(TSB-UAD)

1sddb40

1

- (24489, 9489, 3969) Beats
BIDMC1 - (1274, 204, 7988) PVC

CIMIS44AirTemperature3 - (2346, 632, 3672) Weather Data
CIMIS44AirTemperature5 - (2346, 632, 3672) Weather Data

ECG2 - (10203, 3775, 14488) ECG2 Lead

Table 9: The Time-series Pile. A brief description of datasets that collectively make the Time-series Pile. Due to
space constraints, we only include metadata for the subsets of the M3 and M4 datasets in our experiments, as well as 5
classification and anomaly detection datasets. Characteristics of all short-horizon forecasting, classification and anomaly
detection datasets in the Time-series Pile can be found in our official repository, and Monash archive, UCR/UEA
classification archive, and TSB-UAD anomaly benchmark, respectively.

• Pre-training data. Two interesting directions include using augmentation and synthetic data to improve the
quality of pre-training, and looking at tuning dataset mixtures in the Time-series Pile.

C The Time-series Pile

D Experimental Setup and Results

Through our experiments, our goal is to answer the following research questions.

Is MOMENT effective for multiple time-series analysis tasks in limited and rich supervision settings? We conduct
large-scale experiments on widely used benchmarks to evaluate MOMENT on forecasting, classification, anomaly detection,
and imputation as outlined in Table 8. The limited supervision setting mimics practical scenarios in which it is infeasible
to train (or fine-tune) a deep neural network due to limited compute and, little or inadequately characterized data. In
these settings, MOMENT provides predictions without any explicit (re)training on target data11. On the other hand, the
rich supervision setting allows us to examine whether MOMENT can utilize task-specific data to improve its performance
via end-to-end fine-tuning or linear probing.

What does MOMENT learn? We evaluated MOMENT’s ability to model time-series characteristics such as varying
frequencies, trends, and scales. Structure in the PCA and t-SNE (Fig. 9) visualizations of the embeddings of
synthetically generated sinusoids suggest that MOMENT can capture subtle trend, scale, frequency, and auto-correlation
information. ϵ denotes gaussian noise with 0 mean and 0.1 standard deviation. c controls the factor of interest, i.e. the
power of the trend polynomial, amplitude, and frequency of the sine waves in experiments (i), (ii) & (iii), respectively.

11For classification, the quality of MOMENT’s representations is measured using the accuracy of a Support Vector Machine trained
on them, as is common in prior work on unsupervised representation learning Yue et al. [2022], Franceschi et al. [2019]. However,
unlike prior work, MOMENT embeds time-series without any data-specific training.

17

https://forecastingdata.org/
https://www.timeseriesclassification.com/
https://www.timeseriesclassification.com/
https://github.com/TheDatumOrg/TSB-UAD

Hyper-parameter Tuning. We do not perform extensive hyper-parameter tuning. In all experiments that follow,
unless mentioned otherwise, we fine-tune MOMENT-Base with a batch size of 16, and cosine learning rate schedule with
an initial learning rate of 1e−5. For baseline methods, we capture recommended settings from their respective papers
and public repositories. We report all hyper-parameters settings for MOMENT and baselines in Appendix D.

D.1 Forecasting

Task description. Given a time-series T = [x1, ..., xL] where xi ∈ R, the univariate forecasting problem is to predict
the next H time-steps [xL+1, ..., xL+H]. Depending on the length of the horizon, forecasting can be categorized as
short or long-horizon12. We consider both tasks in our experiments. We propose two configurations of MOMENT for
the forecasting problem: (1) we can produce short-horizon forecasts without any explicit training or fine-tuning, by
appending masked patches and predicting them using the default reconstruction head (Fig. 4 (ii)); (2) alternatively, we
can replace the reconstruction head to a forecasting head and then fine-tune it (Fig. 4 (i)).

D.1.1 Long-Horizon Forecasting

Datasets. We use all the long-horizon forecasting datasets (Sec 3.1). But to speed up our experiments, we drop all
exogenous variables from multi-variate datasets and only consider the target time-series for forecasting.

Baselines. We compare our methods with various transformer-based and deep learning baselines. These models can
be found in Table 11. For Time-LLM we could not run experiments on Weather, electricity, and traffic datasets, due to
time constraints, and since we could not fit them into a single GPU.

Experimental Setting. We train all models with a look-back window of length L = 512 to forecast T = 24, 60
time-steps for the ILI dataset and T = 96, 720 for the rest. We evaluate the Mean Squared Error (MSE) and Mean
Absolute Error (MAE) as metrics.

Hyperparameters. The hyperparameters used for training all models in our long-horizon forecasting experiments are
shown in Table 10.

Model Hyper-parameters

MOMENT

sequence length : 512
patch length : 8

patch stride length : 8
initial learning rate : 0.0001

forecast horizon : {96, 720}

Time-LLM

sequence length : 512
patch length : 16

patch stride length : 8
initial learning rate : 0.001

dimension of feedforward layer : 2048
llm layers : 32

number of heads : 8

N-BEATS

sequence length : 512
stack types : {trend, seasonality}

number of blocks per stack : 3
thetas dimensions : {4, 8}

hidden layer units : 256

Table 10: Hyper-parameter values for long-horizon forecasting models.

D.1.2 Zero-shot Short-Horizon Forecasting

Datasets. To evaluate zero-shot forecasting performance, we conduct experiments on the M3 and M4 datasets (Sec.
3.1).

12There distinction between long and short-horizon forecasting is rather arbitrary. For instance, most of the default forecasting
horizons for the long-horizon forecasting benchmark Influenza-like Illness (24, 36, 48, 60) are shorter than the Hourly subset of the
M4 dataset, a popular short-horizon forecasting benchmark.

18

Methods MOMENTLP Time-LLM GPT4TS PatchTST DLinear TimesNet FEDformer Pyraformer Autoformer Stationary ETSformer LightTS Informer Reformer LogTrans N-BEATS
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Weather 96 0.154 0.209 - - 0.162 0.212 0.149 0.198 0.176 0.237 0.172 0.220 0.217 0.296 0.896 0.556 0.266 0.336 0.173 0.223 0.197 0.281 0.182 0.242 0.300 0.384 0.689 0.596 0.458 0.490 0.152 0.210
720 0.315 0.336 - - 0.326 0.337 0.314 0.334 0.333 0.362 0.365 0.359 0.403 0.428 1.004 0.934 0.419 0.428 0.414 0.410 0.352 0.288 0.352 0.386 1.059 0.741 1.130 0.792 0.869 0.675 0.331 0.359

ETTh1 96 0.387 0.410 0.408 0.429 0.376 0.397 0.370 0.399 0.375 0.399 0.384 0.402 0.376 0.419 0.664 0.612 0.449 0.459 0.513 0.491 0.494 0.479 0.424 0.432 0.865 0.713 0.837 0.728 0.878 0.740 0.399 0.428
720 0.454 0.472 0.523 0.514 0.477 0.456 0.447 0.466 0.472 0.490 0.521 0.500 0.506 0.507 0.963 0.782 0.514 0.512 0.643 0.616 0.562 0.535 0.547 0.533 1.181 0.865 1.257 0.889 1.135 0.852 0.608 0.573

ETTh2 96 0.288 0.345 0.285 0.348 0.285 0.342 0.274 0.336 0.289 0.353 0.340 0.374 0.358 0.397 0.645 0.597 0.346 0.388 0.476 0.458 0.340 0.391 0.397 0.437 3.755 1.525 2.626 1.317 2.116 1.197 0.327 0.387
720 0.403 0.439 0.399 0.435 0.406 0.441 0.379 0.422 0.605 0.551 0.462 0.468 0.463 0.474 0.963 0.783 0.515 0.511 0.562 0.560 0.500 0.497 0.863 0.672 3.647 1.625 3.874 1.697 3.188 1.540 1.454 0.847

ETTm1 96 0.293 0.349 0.384 0.403 0.292 0.346 0.290 0.342 0.299 0.343 0.338 0.375 0.379 0.419 0.543 0.510 0.505 0.475 0.386 0.398 0.375 0.398 0.374 0.400 0.672 0.571 0.538 0.528 0.600 0.546 0.318 0.367
720 0.405 0.416 0.437 0.429 0.417 0.421 0.416 0.420 0.425 0.421 0.478 0.450 0.543 0.490 0.908 0.724 0.671 0.561 0.585 0.516 0.499 0.462 0.527 0.502 1.166 0.823 1.102 0.841 1.153 0.820 0.448 0.448

ETTm2 96 0.170 0.260 0.181 0.269 0.173 0.262 0.165 0.255 0.167 0.269 0.187 0.267 0.203 0.287 0.435 0.507 0.255 0.339 0.192 0.274 0.189 0.280 0.209 0.308 0.365 0.453 0.658 0.619 0.768 0.642 0.197 0.271
720 0.363 0.387 0.366 0.388 0.378 0.401 0.362 0.385 0.397 0.421 0.408 0.403 0.421 0.415 3.625 1.451 0.433 0.432 0.417 0.413 0.414 0.413 0.675 0.587 3.379 1.338 2.631 1.242 3.048 1.328 0.395 0.419

ILI 24 2.728 1.114 3.025 1.195 2.063 0.881 1.319 0.754 2.215 1.081 2.317 0.934 3.228 1.260 1.420 2.012 3.483 1.287 2.294 0.945 2.527 1.020 8.313 2.144 5.764 1.677 4.400 1.382 4.480 1.444 4.539 1.528
60 2.893 1.132 3.245 1.221 1.979 0.957 1.470 0.788 2.368 1.096 2.027 0.928 2.857 1.157 7.662 2.100 2.770 1.125 2.178 0.963 2.487 1.016 7.283 1.985 5.264 1.564 4.882 1.483 5.278 1.560 5.429 1.661

ECL 96 0.138 0.242 - - 0.139 0.238 0.129 0.222 0.140 0.237 0.168 0.272 0.193 0.308 0.386 0.449 0.201 0.317 0.169 0.273 0.187 0.304 0.207 0.307 0.274 0.368 0.312 0.402 0.258 0.357 0.131 0.228
720 0.211 0.305 - - 0.206 0.297 0.197 0.290 0.203 0.301 0.220 0.320 0.246 0.355 0.376 0.445 0.254 0.361 0.222 0.321 0.233 0.345 0.265 0.360 0.373 0.439 0.340 0.420 0.283 0.376 0.208 0.298

Traffic 96 0.391 0.282 - - 0.388 0.282 0.360 0.249 0.410 0.282 0.593 0.321 0.587 0.366 2.085 0.468 0.613 0.388 0.612 0.338 0.607 0.392 0.615 0.391 0.719 0.391 0.732 0.423 0.684 0.384 0.375 0.259
720 0.450 0.310 - - 0.450 0.312 0.432 0.286 0.466 0.315 0.640 0.350 0.626 0.382 0.881 0.473 0.660 0.408 0.653 0.355 0.632 0.396 0.658 0.407 0.864 0.472 0.755 0.423 0.717 0.396 0.508 0.335

Table 11: Long-term forecasting performance measured using Mean Squared Error (MSE) and Mean Absolute Error
(MAE).

Baselines. We compare MOMENT with GPT4TS Zhou et al. [2023], TimesNet Wu et al. [2023], N-BEATS Oreshkin
et al. [2020], 3 statistical and 3 benchmarking forecasting methods: AutoARIMA, AutoTheta, AutoETS, Naive,
Seasonal Naive, and Random Walk (Makridakis et al., 2020).

Experimental Setting. Each statistical method is fit on individual time-series before producing a forecast. We follow
the same train-test split and forecasting horizons from the M3 and M4 competitions, and report sMAPE as is common
in prior work Oreshkin et al. [2020], Wu et al. [2023]13. We follow the same experimental procedure as outlined in
Oreshkin et al. [2021] with two exceptions: our results are reported only (1) on 40% of the M3 and M4 datasets that
were unseen during pre-training, (2) a subset of frequencies with largest support in the datasets. Daily, hourly, and
weekly frequencies had very little data and we could not get promising zero-shot performance for any of the deep
learning models. Some ways that prior work Oreshkin et al. [2021] had overcome this issue was by leveraging data
from frequencies with plenty of data. We also believe that ensembling played an important part in N-BEATS promising
zero-shot performance.

Hyperparameters. The hyperparameters used for training all models in our short-horizon forecasting experiments
are shown in Table 12.

Model Hyper-parameters

MOMENTLP

sequence length : 512
patch length : 8

patch stride length : 8
initial learning rate : 0.002

max epochs : {5, 10}

MOMENT0

sequence length : 512
patch length : 8

patch stride length : 8
initial learning rate : 0.001

N-BEATS

sequence length : 512
stack types : {’trend’, ’seasonality’}

number of blocks per stack : 3
thetas dimensions : {4, 8}

hidden layer units : 256

GPT4TS

forecast horizon : 0
gpt layers : 3

patch length : 1
patch stride length : 1

sequence length : 512

TimesNet

sequence length : 512
model dimension : 32

dimension of feedforward layer : 32
top-k : 5

Table 12: Hyper-parameter values for short-horizon forecasting models.

13The definitions of sMAPE were different in the M3 and M4 competitions. In our experiments, we used the same definition as the
M4 competition.

19

Source Dataset → M4 FredTarget Dataset ↓
M4

Yearly - Yearly
Quarterly - Quarterly
Monthly - Monthly

M3
Yearly Yearly Yearly

Quarterly Quarterly Quarterly
Monthly Monthly Monthly

Table 13: Experimental settings for short-horizon forecasting experiments for varying source and target datasets.

Adjusted Best F1 VUS-ROC
Model name Anomaly Transformer MOMENT0 MOMENTLP DGHL GPT4TS TimesNet AnomalyTransformer MOMENT0 MOMENTLP DGHL GPT4TS TimesNet
Dataset name

1sddb40 0.030 0.560 0.540 0.390 0.190 0.680 0.640 0.740 0.750 0.640 0.660 0.720
BIDMC1 0.990 1.000 1.000 1.000 1.000 1.000 0.690 0.560 0.650 0.720 0.630 0.740

CHARISfive 0.010 0.070 0.130 0.020 0.020 0.080 0.360 0.430 0.400 0.510 0.450 0.460
CHARISten 0.020 0.060 0.110 0.040 0.100 0.030 0.430 0.500 0.540 0.520 0.510 0.530

CIMIS44AirTemperature3 0.060 1.000 0.980 0.500 0.180 0.470 0.640 0.740 0.750 0.740 0.620 0.740
CIMIS44AirTemperature5 0.390 0.990 0.990 0.960 0.200 0.710 0.780 0.750 0.810 0.920 0.560 0.720

ECG2 1.000 1.000 1.000 0.620 0.900 1.000 0.830 0.740 0.840 0.630 0.780 0.600
ECG3 0.360 0.810 0.980 0.800 0.840 0.480 0.540 0.700 0.770 0.680 0.450 0.610

Fantasia 0.750 1.000 0.950 0.660 0.870 0.550 0.730 0.630 0.640 0.710 0.650 0.610
GP711MarkerLFM5z4 0.930 0.810 1.000 0.500 0.640 0.950 0.540 0.630 0.730 0.600 0.620 0.720
GP711MarkerLFM5z5 0.760 0.690 0.970 0.310 0.480 0.900 0.690 0.760 0.720 0.520 0.630 0.840

InternalBleeding4 NaN 1.000 NaN NaN NaN NaN NaN 0.650 NaN NaN NaN NaN
InternalBleeding5 0.940 1.000 1.000 1.000 0.920 1.000 0.460 0.600 0.690 0.760 0.630 0.940

Italianpowerdemand 0.010 0.390 0.740 0.590 0.010 0.440 0.450 0.800 0.770 0.700 0.480 0.710
Lab2Cmac011215EPG5 0.990 0.970 0.980 0.340 0.600 0.990 0.770 0.620 0.630 0.710 0.640 0.610
Lab2Cmac011215EPG6 0.410 0.090 0.100 0.260 0.100 0.170 0.700 0.480 0.480 0.600 0.520 0.450
MesoplodonDensirostris 1.000 0.910 0.840 0.790 1.000 1.000 0.850 0.730 0.720 0.740 0.690 0.790

PowerDemand1 0.870 0.260 0.440 0.490 0.760 0.950 0.720 0.520 0.540 0.530 0.600 0.750
TkeepFirstMARS 0.010 0.080 0.150 0.020 0.020 0.230 0.520 0.570 0.760 0.460 0.500 0.790

TkeepSecondMARS 0.830 0.950 1.000 0.160 0.120 0.950 0.720 0.950 0.910 0.970 0.810 0.980
WalkingAceleration5 0.990 1.000 1.000 0.910 0.870 0.930 0.940 0.860 0.870 0.930 0.910 0.850

apneaecg 0.400 0.210 0.200 0.250 0.310 0.260 0.580 0.690 0.690 0.590 0.580 0.760
apneaecg2 0.650 0.940 1.000 1.000 1.000 0.650 0.790 0.750 0.740 0.730 0.650 0.610

gait1 0.180 0.710 0.360 0.070 0.410 0.520 0.630 0.650 0.570 0.600 0.580 0.600
gaitHunt1 0.080 0.500 0.430 0.020 0.100 0.300 0.810 0.640 0.680 0.570 0.710 0.840

insectEPG2 0.120 0.110 0.230 0.140 0.810 0.960 0.650 0.570 0.820 0.650 0.560 0.730
insectEPG4 0.980 1.000 1.000 0.460 0.210 0.850 0.690 0.700 0.720 0.730 0.490 0.650

ltstdbs30791AS 1.000 1.000 1.000 1.000 1.000 1.000 0.780 0.760 0.810 0.770 0.740 0.670
mit14046longtermecg 0.450 0.560 0.590 0.530 0.580 0.600 0.790 0.660 0.660 0.640 0.610 0.840

park3m 0.150 0.560 0.640 0.200 0.630 0.930 0.630 0.750 0.780 0.650 0.540 0.780
qtdbSel1005V 0.410 0.570 0.650 0.400 0.390 0.530 0.520 0.640 0.640 0.490 0.610 0.540

qtdbSel100MLII 0.420 0.780 0.840 0.410 0.600 0.870 0.620 0.580 0.620 0.590 0.580 0.650
resperation1 0.000 0.040 0.150 0.030 0.010 0.030 0.750 0.500 0.670 0.740 0.470 0.670

s20101mML2 0.690 0.650 0.710 0.150 0.050 0.080 0.640 0.760 0.720 0.690 0.640 0.690
sddb49 0.890 1.000 1.000 0.880 0.940 1.000 0.660 0.730 0.730 0.740 0.580 0.680

sel840mECG1 0.160 0.610 0.660 0.280 0.210 0.360 0.620 0.720 0.720 0.870 0.650 0.600
sel840mECG2 0.150 0.360 0.390 0.320 0.280 0.210 0.590 0.710 0.690 0.490 0.520 0.520

tilt12744mtable 0.070 0.110 0.240 0.100 0.000 0.030 0.480 0.670 0.740 0.660 0.510 0.640
tilt12754table 0.230 0.590 0.640 0.040 0.060 0.050 0.600 0.750 0.820 0.790 0.550 0.750

tiltAPB2 0.920 0.960 0.980 0.360 0.830 0.380 0.770 0.750 0.770 0.710 0.600 0.700
tiltAPB3 0.170 0.480 0.850 0.030 0.050 0.090 0.680 0.610 0.650 0.540 0.440 0.580

weallwalk 0.000 0.520 0.580 0.070 0.130 0.170 0.730 0.930 0.930 0.860 0.870 0.850

Table 14: Anomaly detection performance measured using adj. best F1 and VUS-ROC for a subset of 45 datasets
sampled from the UCR Anomaly archive.

D.2 Classification

Task Description. The classification problem comprises of learning a mapping f : T → {1, ..., C} from a time-series
to a finite set of classes, using a training dataset of the form {(T0, c0), ..., (Tn, cn)}, ci ∈ {1, ..., C}. One straightforward
way to use MOMENT to learn f is to replace its reconstruction head with a linear head that maps patch representations to
the C logits. Another way would be to learn f in two stages, as is common in prior work on unsupervised representation
learning Yue et al. [2022], Franceschi et al. [2019]: in the first stage, we obtain sequence-level representations for
each time-series without access to labels. The second stage involves learning any ML classifier (e.g., Support Vector
Machine with RBF kernel) using these representations and labels.

Datasets. We conduct experiments on a subset of 95 datasets from the UCR Classification Archive Dau et al. [2018].
These datasets (listed in Table 10) comprise of equal-length univariate time-series shorter than 512 time steps.

Baselines. We compare MOMENT against 5 unsupervised representation learning methods (TS2Vec Yue et al. [2022],
TST Zerveas et al. [2021], TS-TCC Eldele et al. [2021], TNC Tonekaboni et al. [2021], and T-Loss Franceschi
et al. [2019]), 8 supervised deep learning (CNN Zebik et al. [2017], Encoder Serrà et al. [2018], FCN Wang et al.

20

Dataset MOMENT0 TimesNet GPT4TS TS2Vec T-Loss TNC TS-TCC TST CNN Encoder FCN MCDNN MLP ResNet t-LeNet TWIESN DTW
GestureMidAirD2 0.608 0.131 0.200 0.469 0.546 0.254 0.254 0.138 0.518 0.480 0.631 0.500 0.545 0.668 0.038 0.575 0.608

UWaveGestureLibraryX 0.821 0.688 0.749 0.795 0.785 0.733 0.733 0.569 0.721 0.771 0.754 0.726 0.768 0.781 0.127 0.608 0.728
GesturePebbleZ2 0.816 0.310 0.285 0.873 0.899 0.430 0.430 0.380 0.778 0.796 0.781 0.720 0.701 0.777 0.184 0.843 0.671

ECG5000 0.942 0.584 0.584 0.935 0.933 0.941 0.941 0.928 0.928 0.941 0.940 0.933 0.930 0.935 0.584 0.922 0.924
OSULeaf 0.785 0.397 0.231 0.851 0.760 0.723 0.723 0.545 0.482 0.554 0.979 0.419 0.560 0.980 0.182 0.628 0.591

MedicalImages 0.762 0.571 0.496 0.789 0.750 0.747 0.747 0.632 0.671 0.664 0.778 0.627 0.719 0.770 0.514 0.649 0.737
Ham 0.581 0.686 0.781 0.714 0.724 0.743 0.743 0.524 0.720 0.682 0.707 0.718 0.699 0.758 0.514 0.768 0.467

DistalPhalanxTW 0.612 0.604 0.619 0.698 0.676 0.676 0.676 0.568 0.671 0.694 0.695 0.685 0.610 0.663 0.285 0.591 0.590
ProximalPhalanxOutlineCorrect 0.856 0.869 0.801 0.887 0.859 0.873 0.873 0.770 0.807 0.768 0.907 0.866 0.730 0.920 0.684 0.817 0.784

FreezerRegularTrain 0.982 0.926 0.829 0.986 0.956 0.989 0.989 0.922 0.987 0.760 0.997 0.973 0.906 0.998 0.500 0.946 0.899
TwoLeadECG 0.847 0.633 0.658 0.986 0.999 0.976 0.976 0.871 0.877 0.784 0.999 0.806 0.753 1.000 0.500 0.949 0.905

GunPointMaleVersusFemale 0.991 0.601 0.475 1.000 0.997 0.997 0.997 1.000 0.977 0.978 0.997 0.952 0.980 0.992 0.525 0.988 0.997
Trace 1.000 0.760 0.710 1.000 0.990 1.000 1.000 1.000 0.952 0.740 1.000 0.902 0.806 1.000 0.240 0.934 1.000

SmoothSubspace 0.820 0.440 0.453 0.980 0.960 0.953 0.953 0.827 0.976 0.964 0.975 0.963 0.980 0.980 0.333 0.849 0.827
MiddlePhalanxTW 0.532 0.506 0.571 0.584 0.591 0.610 0.610 0.506 0.551 0.597 0.501 0.562 0.536 0.495 0.286 0.569 0.506

SyntheticControl 0.990 0.467 0.437 0.997 0.987 0.990 0.990 0.490 0.987 0.973 0.989 0.953 0.973 0.997 0.167 0.879 0.993
ShapesAll 0.815 0.238 0.237 0.902 0.848 0.773 0.773 0.733 0.617 0.679 0.894 0.599 0.776 0.926 0.017 0.643 0.768

AllGestureWiimoteX 0.607 0.209 0.237 0.777 0.763 0.697 0.697 0.259 0.411 0.475 0.713 0.261 0.477 0.741 0.100 0.522 0.716
Wafer 0.997 0.989 0.994 0.998 0.992 0.994 0.994 0.991 0.961 0.998 0.997 0.992 0.996 0.998 0.892 0.916 0.980

FaceFour 0.852 0.830 0.659 0.932 0.920 0.773 0.773 0.511 0.905 0.852 0.930 0.711 0.836 0.955 0.295 0.857 0.830
CricketX 0.749 0.523 0.531 0.782 0.713 0.731 0.731 0.385 0.535 0.644 0.794 0.513 0.591 0.799 0.074 0.627 0.754

DistalPhalanxOutlineCorrect 0.717 0.786 0.659 0.761 0.775 0.754 0.754 0.728 0.772 0.724 0.760 0.759 0.727 0.770 0.583 0.711 0.717
ChlorineConcentration 0.765 0.618 0.565 0.832 0.749 0.753 0.753 0.562 0.608 0.583 0.817 0.662 0.800 0.853 0.533 0.554 0.648

Chinatown 0.965 0.274 0.857 0.965 0.951 0.983 0.983 0.936 0.977 0.966 0.980 0.945 0.872 0.978 0.726 0.825 0.957
GestureMidAirD1 0.646 0.285 0.292 0.608 0.608 0.369 0.369 0.208 0.534 0.528 0.695 0.518 0.575 0.698 0.038 0.549 0.569

MiddlePhalanxOutlineAgeGroup 0.461 0.344 0.526 0.636 0.656 0.630 0.630 0.617 0.534 0.577 0.535 0.558 0.522 0.545 0.571 0.578 0.500
UMD 0.993 0.681 0.368 1.000 0.993 0.986 0.986 0.910 0.960 0.771 0.988 0.842 0.949 0.990 0.333 0.835 0.993
Crop 0.734 0.388 0.341 0.756 0.722 0.742 0.742 0.710 0.670 0.760 0.738 0.687 0.618 0.743 0.042 0.489 0.665

GesturePebbleZ1 0.849 0.512 0.605 0.930 0.919 0.395 0.395 0.500 0.844 0.821 0.880 0.769 0.792 0.901 0.163 0.840 0.791
WordSynonyms 0.688 0.335 0.451 0.676 0.691 0.531 0.531 0.422 0.568 0.557 0.561 0.470 0.599 0.617 0.219 0.506 0.649

ArrowHead 0.743 0.360 0.429 0.857 0.766 0.737 0.737 0.771 0.717 0.630 0.843 0.678 0.784 0.838 0.303 0.689 0.703
Wine 0.537 0.519 0.611 0.870 0.815 0.778 0.778 0.500 0.519 0.556 0.611 0.500 0.541 0.722 0.500 0.744 0.574

Coffee 0.893 0.964 0.679 1.000 1.000 1.000 1.000 0.821 1.000 0.886 1.000 0.979 0.993 1.000 0.507 0.979 1.000
Earthquakes 0.748 0.741 0.748 0.748 0.748 0.748 0.748 0.748 0.709 0.740 0.725 0.748 0.727 0.712 0.748 0.748 0.719

Herring 0.594 0.531 0.578 0.641 0.594 0.594 0.594 0.594 0.531 0.512 0.644 0.572 0.491 0.600 0.594 0.625 0.531
Beef 0.833 0.400 0.167 0.767 0.667 0.600 0.600 0.500 0.767 0.707 0.680 0.507 0.713 0.753 0.200 0.527 0.633

MiddlePhalanxOutlineCorrect 0.467 0.512 0.519 0.838 0.825 0.818 0.818 0.753 0.744 0.752 0.795 0.796 0.755 0.826 0.570 0.743 0.698
ECGFiveDays 0.804 0.519 0.561 1.000 1.000 0.878 0.878 0.763 0.874 0.842 0.985 0.800 0.973 0.966 0.497 0.723 0.768

Yoga 0.834 0.672 0.691 0.887 0.837 0.791 0.791 0.830 0.786 0.753 0.837 0.741 0.856 0.867 0.536 0.626 0.837
Adiac 0.688 0.565 0.598 0.762 0.675 0.767 0.767 0.550 0.393 0.318 0.841 0.620 0.391 0.833 0.023 0.428 0.604

MoteStrain 0.774 0.700 0.681 0.861 0.851 0.843 0.843 0.768 0.885 0.872 0.936 0.691 0.855 0.924 0.539 0.809 0.835
Strawberry 0.951 0.946 0.935 0.962 0.954 0.965 0.965 0.916 0.952 0.959 0.975 0.958 0.959 0.980 0.643 0.911 0.941

InsectWingbeatSound 0.607 0.529 0.598 0.630 0.597 0.415 0.415 0.266 0.585 0.630 0.392 0.587 0.604 0.499 0.091 0.435 0.355
DodgerLoopWeekend 0.826 0.638 0.804 0.964 NaN NaN NaN 0.732 0.974 0.983 0.904 0.978 0.978 0.952 0.739 0.954 0.949

Meat 0.917 0.433 0.667 0.950 0.950 0.883 0.883 0.900 0.913 0.787 0.803 0.787 0.893 0.990 0.333 0.970 0.933
MelbournePedestrian 0.876 0.718 0.207 0.959 0.944 0.949 0.949 0.741 0.813 0.884 0.912 0.840 0.863 0.909 0.100 0.730 0.791

FaceAll 0.791 0.177 0.147 0.771 0.786 0.813 0.813 0.504 0.774 0.794 0.938 0.720 0.794 0.867 0.080 0.673 0.808
FacesUCR 0.811 0.679 0.462 0.924 0.884 0.863 0.863 0.543 0.873 0.867 0.943 0.775 0.831 0.954 0.143 0.641 0.905

AllGestureWiimoteY 0.666 0.223 0.160 0.793 0.726 0.741 0.741 0.423 0.479 0.509 0.784 0.420 0.571 0.794 0.100 0.600 0.729
ShakeGestureWiimoteZ 0.960 0.020 0.080 0.940 0.920 0.860 0.860 0.760 0.580 0.756 0.884 0.516 0.548 0.880 0.100 0.864 0.860

BME 0.960 0.467 0.367 0.993 0.993 0.933 0.933 0.760 0.947 0.827 0.836 0.896 0.905 0.999 0.333 0.819 0.900
FordB 0.798 0.754 0.677 0.794 0.793 0.815 0.815 0.507 0.749 0.777 0.772 0.698 0.707 0.813 0.503 0.512 0.620

Fish 0.800 0.726 0.731 0.926 0.891 0.817 0.817 0.720 0.855 0.734 0.961 0.720 0.848 0.981 0.126 0.878 0.823
SonyAIBORobotSurface2 0.829 0.646 0.650 0.871 0.889 0.907 0.907 0.745 0.831 0.844 0.980 0.804 0.831 0.975 0.617 0.635 0.831

FiftyWords 0.802 0.499 0.492 0.771 0.732 0.653 0.653 0.525 0.624 0.658 0.646 0.611 0.708 0.740 0.125 0.518 0.690
ToeSegmentation1 0.925 0.456 0.561 0.917 0.939 0.930 0.930 0.807 0.598 0.706 0.961 0.559 0.589 0.957 0.526 0.882 0.772
FreezerSmallTrain 0.902 0.704 0.500 0.870 0.933 0.979 0.979 0.920 0.739 0.676 0.683 0.688 0.686 0.832 0.500 0.917 0.753

TwoPatterns 0.994 0.989 0.923 1.000 0.999 0.999 0.999 0.466 0.991 1.000 0.870 0.976 0.948 1.000 0.259 0.875 1.000
ShapeletSim 0.961 0.500 0.489 1.000 0.672 0.683 0.683 0.489 0.497 0.510 0.706 0.498 0.513 0.782 0.500 0.546 0.650

Plane 0.990 0.981 0.924 1.000 0.990 1.000 1.000 0.933 0.962 0.964 1.000 0.952 0.977 1.000 0.143 1.000 1.000
GestureMidAirD3 0.369 0.085 0.162 0.292 0.285 0.177 0.177 0.154 0.317 0.368 0.326 0.278 0.382 0.340 0.038 0.275 0.323

DiatomSizeReduction 0.879 0.967 0.987 0.984 0.984 0.977 0.977 0.961 0.954 0.880 0.346 0.646 0.909 0.301 0.301 0.914 0.967
CricketZ 0.731 0.459 0.397 0.792 0.708 0.713 0.713 0.403 0.501 0.651 0.810 0.484 0.629 0.809 0.062 0.643 0.754

Lightning7 0.726 0.575 0.562 0.863 0.795 0.685 0.685 0.411 0.647 0.696 0.825 0.559 0.616 0.827 0.260 0.608 0.726
UWaveGestureLibraryY 0.738 0.547 0.648 0.719 0.710 0.641 0.641 0.348 0.626 0.676 0.642 0.639 0.699 0.666 0.121 0.497 0.634

GunPointAgeSpan 0.962 0.494 0.494 0.987 0.994 0.994 0.994 0.991 0.912 0.890 0.996 0.887 0.934 0.997 0.494 0.965 0.918
DistalPhalanxOutlineAgeGroup 0.669 0.597 0.489 0.727 0.727 0.755 0.755 0.741 0.758 0.761 0.718 0.729 0.647 0.718 0.433 0.705 0.770

SwedishLeaf 0.923 0.894 0.899 0.941 0.914 0.923 0.923 0.738 0.884 0.902 0.967 0.841 0.845 0.963 0.064 0.837 0.792
CBF 0.960 0.761 0.830 1.000 0.983 0.998 0.998 0.898 0.959 0.977 0.994 0.908 0.869 0.996 0.332 0.896 0.997

BeetleFly 0.900 0.400 0.700 0.900 0.800 0.800 0.800 1.000 0.900 0.620 0.910 0.630 0.880 0.850 0.500 0.790 0.700
AllGestureWiimoteZ 0.537 0.221 0.116 0.746 0.723 0.689 0.689 0.447 0.375 0.396 0.692 0.287 0.439 0.726 0.100 0.516 0.643

DodgerLoopDay 0.438 0.237 0.200 0.562 NaN NaN NaN 0.200 0.312 0.487 0.143 0.305 0.160 0.150 0.160 0.593 0.500
GunPointOldVersusYoung 0.981 0.508 0.524 1.000 1.000 1.000 1.000 1.000 0.922 0.923 0.989 0.926 0.941 0.989 0.524 0.975 0.838

FordA 0.936 0.913 0.914 0.936 0.928 0.930 0.930 0.568 0.896 0.928 0.914 0.863 0.816 0.937 0.510 0.555 0.555
ItalyPowerDemand 0.911 0.837 0.880 0.925 0.954 0.955 0.955 0.845 0.954 0.964 0.963 0.966 0.953 0.962 0.499 0.871 0.950

ProximalPhalanxOutlineAgeGroup 0.863 0.868 0.839 0.834 0.844 0.839 0.839 0.854 0.812 0.872 0.825 0.839 0.849 0.847 0.488 0.839 0.805
GunPoint 0.927 0.887 0.847 0.980 0.980 0.993 0.993 0.827 0.948 0.784 1.000 0.907 0.928 0.991 0.493 0.989 0.907

ProximalPhalanxTW 0.712 0.800 0.712 0.824 0.771 0.800 0.800 0.780 0.777 0.791 0.761 0.775 0.767 0.773 0.341 0.784 0.761
PickupGestureWiimoteZ 0.620 0.100 0.080 0.820 0.740 0.600 0.600 0.240 0.608 0.496 0.744 0.412 0.604 0.704 0.100 0.616 0.660

SonyAIBORobotSurface1 0.729 0.542 0.589 0.903 0.902 0.899 0.899 0.724 0.690 0.729 0.958 0.655 0.692 0.961 0.429 0.725 0.725
PowerCons 0.894 0.956 0.989 0.961 0.900 0.961 0.961 0.911 0.960 0.971 0.863 0.929 0.977 0.879 0.500 0.852 0.878

PhalangesOutlinesCorrect 0.652 0.614 0.663 0.809 0.784 0.804 0.804 0.773 0.799 0.745 0.818 0.795 0.756 0.845 0.613 0.656 0.728
BirdChicken 0.850 0.450 0.550 0.800 0.850 0.650 0.650 0.650 0.710 0.510 0.940 0.540 0.740 0.880 0.500 0.620 0.750

ToeSegmentation2 0.915 0.731 0.731 0.892 0.900 0.877 0.877 0.615 0.752 0.702 0.889 0.649 0.745 0.894 0.815 0.794 0.838
CricketY 0.746 0.531 0.521 0.749 0.728 0.718 0.718 0.467 0.582 0.639 0.793 0.521 0.598 0.810 0.085 0.652 0.744

ElectricDevices 0.646 0.552 0.506 0.721 0.707 0.686 0.686 0.676 0.686 0.702 0.706 0.653 0.593 0.728 0.242 0.605 0.602
DodgerLoopGame 0.623 0.471 0.717 0.841 NaN NaN NaN 0.696 0.816 0.810 0.768 0.877 0.865 0.710 0.478 0.716 0.877

Fungi 0.898 0.043 0.054 0.957 1.000 0.753 0.753 0.366 0.961 0.934 0.018 0.051 0.863 0.177 0.063 0.439 0.839
Symbols 0.936 0.864 0.694 0.976 0.963 0.916 0.916 0.786 0.808 0.754 0.955 0.644 0.836 0.893 0.174 0.798 0.950

UWaveGestureLibraryZ 0.765 0.632 0.643 0.770 0.757 0.690 0.690 0.655 0.630 0.684 0.727 0.645 0.697 0.749 0.121 0.573 0.658
ECG200 0.760 0.830 0.790 0.920 0.940 0.880 0.880 0.830 0.816 0.884 0.888 0.838 0.914 0.874 0.640 0.874 0.770

Table 15: Classification accuracy of methods across 91 UCR datasets. MOMENT without fine-tuning on individual
datasets demonstrates promising accuracy.

[2017], MCNN Cui et al. [2016], MLP Wang et al. [2017], ResNet Wang et al. [2017], t-LeNet Le Guennec et al.
[2016], TWIESN Tanisaro and Heidemann [2016]), 1 supervised statistical learning method DTW Dau et al. [2018]),
TimesNet Wu et al. [2023] and GPT4TS Zhou et al. [2023].

21

Experimental Setting. All models except for MOMENT were trained on each dataset individually, either with labels for
supervised deep and statistical learning methods), or without labels for representation learning methods. We collect
baseline results for deep learning methods from Ismail Fawaz et al. [2019], representation learning methods from Yue
et al. [2022], and DTW from Dau et al. [2018]. We report accuracy as the evaluation metric.

Hyperparameters. The hyperparameters used for evaluating classification experiments are shown in Table 16.

Model Hyper-parameters

MOMENT0

sequence length : 512
patch length : 8

patch stride length : 8

SVM

C : {0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 1000, 10000}
kernel : RBF
degree : 3

cache size : 200
max iterations : 10000000

decision function shape : One versus rest

Table 16: Hyper-parameter values for classification.

D.3 Anomaly Detection

Task Description. Given a time-series T , anomaly detection is a binary classification problem, where the goal is to
detect whether a time step xi is indicative of an anomaly or not. As shown in Fig. 4 (v), to detect anomalies in T , we
retain MOMENT’s reconstruction head and use it to reconstruct the input time-series. Then, time steps where observations
and predictions differ beyond a certain threshold are classified as anomalies14.

Datasets. We conduct experiments on a subset of 46 univariate time-series from the UCR Anomaly Archive Wu
and Keogh [2023], as enumerated in Table 11. When choosing the subset of time-series, we prioritized coverage over
different domains and data sources represented in the archive.

Baselines. We compare MOMENT with 2 state-of-the-art anomaly detection methods DGHL Challu et al. [2022] and
Anomaly Transformer Xu et al. [2022] along with TimesNet and GPT4TS. We also include k-Nearest Neighbors (with
k = 5) Ramaswamy et al. [2000], a classical anomaly detection method in our experiments. In the zero-shot setting, we
compare MOMENT to randomly initialized DGHL (DGHL0)15 and k-NN.

Experimental Setting. All algorithms use a fixed anomaly detection window size (= 512). Based on prior work Wu
et al. [2023], Zhou et al. [2023], we use the mean squared error between predictions and observations as the anomaly
criterion16. Following prior work Goswami et al. [2023], we downsample all time-series longer than 2560 timesteps by
a factor of 10 to speed up the training and evaluation process.

We report two anomaly detection metrics: adjusted best F1 which is frequently used in practice Goswami et al. [2023],
Challu et al. [2022], and the recently proposed volume under ROC surface (VUS-ROC) metric Paparrizos et al. [2022b].
For both metrics, higher scores are better.

Hyperparameters. The hyperparameters used for training all models in our anomaly detection experiments are
shown in Table 17.

D.4 Imputation

Task Description. Consider a time-series T = [x1, ..., xL] and an observation mask M = [m1, ...,mL], where mi =
0 if xi is missing and mi = 1 if xi is observed. Then imputation is the task of estimating the missing values T by

14Estimating good thresholds for anomaly detection is beyond the scope of this study and an active area of research Goswami et al.
[2023], Schmidl et al. [2022].

15Randomly initialized DGHL is not a trivial zero-shot baseline, since it performs gradient descent to find the best latent z that
minimizes reconstruction error during inference time Challu et al. [2022].

16To ensure a fair comparison, we do not use Anomaly Transformer’s joint criterion as the anomaly score. We believe that this
might put the Anomaly Transformer at some disadvantage in our experiments.

22

Model Hyper-parameters

MOMENT0

sequence length : 512
patch length : 8

patch stride length : 8

MOMENTLP

sequence length : 512
patch length : 8

patch stride length : 8
initial lr : 5e− 5

Anomaly Transformer

sequence length : 512
number of channels : 1

k : 3
anomaly ratio : 4.00

model dimensions : 512
number of heads : 8

embedding layers : 3
dimension of feedforward layer : 512

DGHL

sequence length : 512
number of channels : 1
hidden multiplier : 32

max filters : 256
kernel multiplier : 1

sub-windows : 4
size of latent z vector : 50

number of iteration in the Langevyn dynamics inference formula : 100
z step size : 0.1

noise std : 0.001

GPT4TS

sequence length : 512
gpt layers : 3

patch length : 1
patch stride length : 1

transformer backbone : GPT-2

TimesNet

sequence length : 512
dimension of model : 16

dimension of feedforward layer : 16
top k : 3

number of kernels : 6

k-NN k : 5

Table 17: Hyperparameter values for anomaly detection.

exploiting its observed values. We treat a patch as observed only if all its time steps are observed. For the remaining
patches, we replace their patch embeddings with [MASK] and use MOMENT’s default reconstruction head to impute its
values (Fig. 4 (iv)).

Datasets. We evaluate imputation performance on 6 real-world datasets from domains where missing data is a
common problem: 4 subsets of Electricity Transformer Temperature (ETT), Weather, and Electricity Wu et al. [2023],
Zhou et al. [2023].

Baselines. We compare the two variants of MOMENT with 3 state-of-the-art deep learning methods, TimesNet, FPT,
and DGHL; and 3 statistical interpolation methods, Cubic Spline, Linear, and 1-D Nearest Neighbor interpolation.

Experimental Setting. To evaluate the models’ ability to interpolate missing values, we randomly mask contiguous
sub-sequences of length 8. Instead of masking contiguous sub-sequences, previous studies Wu et al. [2023], Zhou et al.
[2023] mask individual time points, making the imputation task much easier. The results from prior studies are shown
in Table 19. We observe that the statistical methods perform similarly to transformer methods, owing to the ease of
the task. For our experiments involving randomly masking patches of length 8, our results are shown in Table 20. We
measure the imputation performance of models using mean squared error, over 4 different masking rates: 12.5%, 25%,
37.5%, and 50%. f

23

Hyperparameters. The hyperparameters used for training all models in our imputation experiments are shown in
Table 18.

Model Hyper-parameters

MOMENT0

sequence length : 512
patch length : 8

patch stride length : 8

MOMENTLP

sequence length : 512
patch length : 8

patch stride length : 8
initial lr : 0.0001

GPT4TS

sequence length : 512
gpt layers : 3

patch length : 1
patch stride length : 1

transformer backbone : GPT-2
dimension of feedforward layer : 16

TimesNet

sequence length : 512
dimension of model : 64

dimension of feedforward layer : 64
top k : 3

number of kernels : 6

Table 18: Hyperparameter values for imputation.

Methods GPT4TS TimesNet PatchTST ETSformer LightTS DLinear FEDformer Stationary Autoformer Informer Reformer Naive Linear Nearest Cubic
Dataset Mask Ratio MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T
T
m
1 12.5% 0.017 0.085 0.023 0.101 0.041 0.130 0.096 0.229 0.093 0.206 0.080 0.193 0.052 0.166 0.032 0.119 0.046 0.144 0.063 0.180 0.042 0.146 0.059 0.145 0.034 0.109 0.055 0.140 0.052 0.135

25% 0.022 0.096 0.023 0.101 0.044 0.135 0.096 0.229 0.093 0.206 0.080 0.193 0.052 0.166 0.032 0.119 0.046 0.144 0.063 0.180 0.042 0.146 0.066 0.153 0.036 0.112 0.056 0.142 0.060 0.142
37.5% 0.029 0.111 0.029 0.111 0.049 0.143 0.133 0.271 0.113 0.231 0.103 0.219 0.069 0.191 0.039 0.131 0.057 0.161 0.079 0.200 0.063 0.182 0.077 0.164 0.038 0.117 0.060 0.146 0.071 0.151
50% 0.040 0.128 0.036 0.124 0.055 0.151 0.186 0.323 0.134 0.255 0.132 0.248 0.089 0.218 0.047 0.145 0.067 0.174 0.093 0.218 0.082 0.208 0.094 0.178 0.042 0.123 0.066 0.153 0.100 0.164
Avg 0.028 0.105 0.027 0.107 0.047 0.140 0.120 0.253 0.104 0.218 0.093 0.206 0.062 0.177 0.036 0.126 0.051 0.150 0.071 0.188 0.055 0.166 0.074 0.160 0.038 0.115 0.059 0.145 0.071 0.148

E
T
T
m
2 12.5% 0.017 0.076 0.018 0.080 0.026 0.094 0.108 0.239 0.034 0.127 0.062 0.166 0.056 0.159 0.021 0.088 0.023 0.092 0.133 0.270 0.108 0.228 0.038 0.095 0.023 0.077 0.035 0.091 0.033 0.097

25% 0.020 0.080 0.020 0.085 0.028 0.099 0.164 0.294 0.042 0.143 0.085 0.196 0.080 0.195 0.024 0.096 0.026 0.101 0.135 0.272 0.136 0.262 0.041 0.100 0.025 0.081 0.036 0.093 0.039 0.103
37.5% 0.022 0.087 0.023 0.091 0.030 0.104 0.237 0.356 0.051 0.159 0.106 0.222 0.110 0.231 0.027 0.103 0.030 0.108 0.155 0.293 0.175 0.300 0.046 0.106 0.027 0.085 0.038 0.095 0.047 0.111
50% 0.025 0.095 0.026 0.098 0.034 0.110 0.323 0.421 0.059 0.174 0.131 0.247 0.156 0.276 0.030 0.108 0.035 0.119 0.200 0.333 0.211 0.329 0.051 0.115 0.030 0.090 0.041 0.100 0.062 0.122
Avg 0.021 0.084 0.022 0.088 0.029 0.102 0.208 0.327 0.046 0.151 0.096 0.208 0.101 0.215 0.026 0.099 0.029 0.105 0.156 0.292 0.157 0.280 0.044 0.104 0.026 0.083 0.038 0.095 0.045 0.109

E
T
T
h
1

12.5% 0.043 0.140 0.057 0.159 0.093 0.201 0.126 0.263 0.240 0.345 0.151 0.267 0.070 0.190 0.060 0.165 0.074 0.182 0.114 0.234 0.074 0.194 0.211 0.275 0.083 0.183 0.181 0.260 0.107 0.207
25% 0.054 0.156 0.069 0.178 0.107 0.217 0.169 0.304 0.265 0.364 0.180 0.292 0.106 0.236 0.080 0.189 0.090 0.203 0.140 0.262 0.102 0.227 0.259 0.298 0.098 0.197 0.192 0.266 0.127 0.224

37.5% 0.072 0.180 0.084 0.196 0.120 0.230 0.220 0.347 0.296 0.382 0.215 0.318 0.124 0.258 0.102 0.212 0.109 0.222 0.174 0.293 0.135 0.261 0.323 0.326 0.119 0.215 0.215 0.277 0.160 0.245
50% 0.107 0.216 0.102 0.215 0.141 0.248 0.293 0.402 0.334 0.404 0.257 0.347 0.165 0.299 0.133 0.240 0.137 0.248 0.215 0.325 0.179 0.298 0.423 0.366 0.158 0.242 0.257 0.297 0.235 0.279
Avg 0.069 0.173 0.078 0.187 0.115 0.224 0.202 0.329 0.284 0.373 0.201 0.306 0.117 0.246 0.094 0.201 0.103 0.214 0.161 0.279 0.122 0.245 0.304 0.317 0.114 0.209 0.211 0.275 0.157 0.239

E
T
T
h
2

12.5% 0.039 0.125 0.040 0.130 0.057 0.152 0.187 0.319 0.101 0.231 0.100 0.216 0.095 0.212 0.042 0.133 0.044 0.138 0.305 0.431 0.163 0.289 0.090 0.167 0.058 0.134 0.085 0.162 0.091 0.172
25% 0.044 0.135 0.046 0.141 0.061 0.158 0.279 0.390 0.115 0.246 0.127 0.247 0.137 0.258 0.049 0.147 0.050 0.149 0.322 0.444 0.206 0.331 0.097 0.176 0.060 0.138 0.088 0.165 0.101 0.179

37.5% 0.051 0.147 0.052 0.151 0.067 0.166 0.400 0.465 0.126 0.257 0.158 0.276 0.187 0.304 0.056 0.158 0.060 0.163 0.353 0.462 0.252 0.370 0.105 0.185 0.064 0.144 0.091 0.169 0.118 0.190
50% 0.059 0.158 0.060 0.162 0.073 0.174 0.602 0.572 0.136 0.268 0.183 0.299 0.232 0.341 0.065 0.170 0.068 0.173 0.369 0.472 0.316 0.419 0.118 0.199 0.071 0.153 0.097 0.176 0.150 0.205
Avg 0.048 0.141 0.049 0.146 0.065 0.163 0.367 0.436 0.119 0.250 0.142 0.259 0.163 0.279 0.053 0.152 0.055 0.156 0.337 0.452 0.234 0.352 0.102 0.182 0.063 0.142 0.090 0.168 0.115 0.186

E
C
L

12.5% 0.080 0.194 0.085 0.202 0.055 0.160 0.196 0.321 0.102 0.229 0.092 0.214 0.107 0.237 0.093 0.210 0.089 0.210 0.218 0.326 0.190 0.308 0.214 0.293 0.079 0.182 0.181 0.271 0.091 0.196
25% 0.087 0.203 0.089 0.206 0.065 0.175 0.207 0.332 0.121 0.252 0.118 0.247 0.120 0.251 0.097 0.214 0.096 0.220 0.219 0.326 0.197 0.312 0.266 0.324 0.094 0.199 0.194 0.280 0.115 0.217

37.5% 0.094 0.211 0.094 0.213 0.076 0.189 0.219 0.344 0.141 0.273 0.144 0.276 0.136 0.266 0.102 0.220 0.104 0.229 0.222 0.328 0.203 0.315 0.339 0.366 0.117 0.223 0.220 0.296 0.152 0.245
50% 0.101 0.220 0.100 0.221 0.091 0.208 0.235 0.357 0.160 0.293 0.175 0.305 0.158 0.284 0.108 0.228 0.113 0.239 0.228 0.331 0.210 0.319 0.447 0.424 0.156 0.259 0.264 0.324 0.222 0.286
Avg 0.090 0.207 0.092 0.210 0.072 0.183 0.214 0.339 0.131 0.262 0.132 0.260 0.130 0.259 0.100 0.218 0.101 0.225 0.222 0.328 0.200 0.313 0.316 0.352 0.112 0.216 0.215 0.293 0.145 0.236

W
ea
th
er

12.5% 0.026 0.049 0.025 0.045 0.029 0.049 0.057 0.141 0.047 0.101 0.039 0.084 0.041 0.107 0.027 0.051 0.026 0.047 0.037 0.093 0.031 0.076 0.041 0.042 0.026 0.031 0.038 0.041 0.038 0.036
25% 0.028 0.052 0.029 0.052 0.031 0.053 0.065 0.155 0.052 0.111 0.048 0.103 0.064 0.163 0.029 0.056 0.030 0.054 0.042 0.100 0.035 0.082 0.045 0.045 0.027 0.032 0.040 0.041 0.043 0.039

37.5% 0.033 0.060 0.031 0.057 0.035 0.058 0.081 0.180 0.058 0.121 0.057 0.117 0.107 0.229 0.033 0.062 0.032 0.060 0.049 0.111 0.040 0.091 0.048 0.049 0.030 0.034 0.042 0.043 0.055 0.043
50% 0.037 0.065 0.034 0.062 0.038 0.063 0.102 0.207 0.065 0.133 0.066 0.134 0.183 0.312 0.037 0.068 0.037 0.067 0.053 0.114 0.046 0.099 0.054 0.054 0.033 0.037 0.044 0.045 0.069 0.048
Avg 0.031 0.056 0.030 0.054 0.060 0.144 0.076 0.171 0.055 0.117 0.052 0.110 0.099 0.203 0.032 0.059 0.031 0.057 0.045 0.104 0.038 0.087 0.047 0.048 0.029 0.034 0.041 0.043 0.051 0.042

Table 19: Results for the imputation task in the time-steps missing at random setting. Results averaged across 4 different
masking rates: {12.5%, 25%, 37.5%, 50%}. Statistical interpolation methods such as forward and backward fill (naive),
linear, nearest, and cubic interpolation perform better than many transformer-based baselines. Therefore, we consider
the much harder, patches missing at random setting in our experiments.

D.5 What is MOMENT Learning?

To investigate what MOMENT is learning, we conducted a series of experiments using synthetically generated sine waves
to evaluate MOMENT’s ability to capture changes in trend, amplitude, frequencies, baselines, and phase of time-series. In
each experiment, c controls the factor of interest, for example the power of the trend polynomial c ∈ (18 , 8) Oreshkin
et al. [2020] (Fig. 8), and frequency c ∈ (1, 32) of the generated sine waves (Fig. 8). We generate multiple sine waves by
varying c, derive their sequence-level representations using MOMENT (Sec. 3.4), and visualize them in a 2- dimensional
space using PCA and t-SNE van der Maaten [2014] in Fig. 4 and Fig. 6.

We also study the composition of the learnable mask embedding and the relationship between frequency and recon-
struction error in a zero-shot setting. We find that the learned mask embedding is approximately composed of numbers
drawn from the standard normal and that MOMENT can reconstruct lower frequency signals better. We observed a curious
spike in reconstruction error around time-series of frequency c = 64. (Fig. 10)

24

Dataset Mask Ratio MOMENT0 MOMENTLP GPT4TS TimesNet Naive Linear Nearest Cubic
MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Weather

0.125 0.085 0.131 0.033 0.073 0.036 0.076 0.035 0.096 0.105 0.089 0.050 0.055 0.069 0.067 0.373 0.115
0.250 0.079 0.130 0.036 0.078 0.030 0.071 0.037 0.100 0.127 0.104 0.075 0.065 0.094 0.076 0.297 0.125
0.375 0.081 0.128 0.034 0.075 0.030 0.070 0.035 0.099 0.120 0.111 0.066 0.069 0.082 0.080 0.904 0.176
0.500 0.081 0.129 0.035 0.075 0.026 0.069 0.035 0.098 0.124 0.127 0.066 0.078 0.086 0.090 0.831 0.197

Mean 0.082 0.130 0.035 0.075 0.031 0.071 0.036 0.098 0.119 0.108 0.065 0.067 0.083 0.078 0.601 0.153

ETTh1

0.125 0.430 0.417 0.160 0.239 0.183 0.242 0.158 0.254 1.008 0.602 0.583 0.466 0.712 0.523 0.985 0.661
0.250 0.373 0.392 0.142 0.238 0.278 0.267 0.154 0.261 1.311 0.686 0.833 0.540 0.954 0.581 1.433 0.772
0.375 0.398 0.398 0.121 0.228 0.232 0.263 0.195 0.274 1.317 0.703 0.843 0.572 0.973 0.613 2.615 1.028
0.500 0.408 0.403 0.132 0.231 0.213 0.243 0.192 0.267 1.103 0.643 0.840 0.559 0.963 0.601 3.681 1.204

Mean 0.402 0.403 0.139 0.234 0.227 0.254 0.175 0.264 1.185 0.658 0.775 0.534 0.900 0.579 2.178 0.916

ETTh2

0.125 0.122 0.235 0.051 0.150 0.115 0.215 0.163 0.277 0.196 0.285 0.105 0.208 0.134 0.225 0.452 0.404
0.250 0.127 0.237 0.079 0.177 0.114 0.216 0.161 0.280 0.210 0.291 0.120 0.220 0.154 0.240 0.831 0.524
0.375 0.124 0.237 0.056 0.155 0.110 0.216 0.170 0.291 0.229 0.310 0.142 0.243 0.175 0.262 1.571 0.672
0.500 0.127 0.242 0.056 0.154 0.098 0.207 0.186 0.295 0.265 0.329 0.171 0.264 0.199 0.279 4.823 0.966

Mean 0.125 0.238 0.061 0.159 0.109 0.213 0.170 0.286 0.225 0.304 0.135 0.234 0.166 0.252 1.920 0.641

ETTm1

0.125 0.179 0.278 0.069 0.170 0.078 0.147 0.089 0.200 0.273 0.293 0.094 0.183 0.147 0.217 0.334 0.345
0.250 0.206 0.290 0.071 0.169 0.071 0.144 0.080 0.194 0.395 0.341 0.114 0.202 0.171 0.234 0.539 0.424
0.375 0.209 0.289 0.069 0.163 0.076 0.146 0.091 0.199 0.475 0.378 0.188 0.242 0.257 0.274 0.842 0.528
0.500 0.215 0.294 0.086 0.169 0.081 0.149 0.088 0.197 0.679 0.448 0.265 0.291 0.346 0.316 1.715 0.680

Mean 0.202 0.288 0.074 0.168 0.076 0.146 0.087 0.198 0.455 0.365 0.165 0.229 0.230 0.260 0.858 0.494

ETTm2

0.125 0.076 0.183 0.032 0.108 0.043 0.126 0.128 0.233 0.087 0.164 0.049 0.117 0.062 0.132 0.237 0.262
0.250 0.084 0.187 0.029 0.105 0.046 0.129 0.101 0.207 0.104 0.182 0.057 0.132 0.073 0.146 0.373 0.309
0.375 0.076 0.181 0.032 0.109 0.059 0.137 0.116 0.225 0.115 0.196 0.063 0.141 0.078 0.154 0.626 0.376
0.500 0.077 0.183 0.031 0.110 0.059 0.140 0.103 0.212 0.144 0.222 0.080 0.162 0.102 0.177 0.899 0.477

Mean 0.078 0.184 0.031 0.108 0.052 0.133 0.112 0.220 0.113 0.191 0.062 0.138 0.079 0.152 0.534 0.356

Electricity

0.125 0.251 0.370 0.095 0.211 0.069 0.180 0.126 0.248 1.350 0.818 0.458 0.466 0.608 0.492 0.924 0.610
0.250 0.249 0.372 0.093 0.211 0.073 0.184 0.121 0.246 1.447 0.857 0.654 0.554 0.815 0.582 1.619 0.769
0.375 0.250 0.371 0.094 0.211 0.071 0.181 0.125 0.248 1.518 0.888 0.836 0.637 1.031 0.675 2.507 0.959
0.500 0.250 0.371 0.092 0.210 0.075 0.185 0.126 0.249 1.581 0.915 1.002 0.712 1.239 0.766 3.978 1.213

Mean 0.250 0.371 0.094 0.211 0.072 0.183 0.124 0.248 1.474 0.869 0.737 0.592 0.923 0.629 2.257 0.888

Table 20: Imputation Results. MOMENT achieves state-of-the-art imputation results in both zero-shot and linear probe
fine-tuning settings.

0.150.100.050.000.050.100.150.20

0.10
0.05
0.00
0.05
0.10
0.15
0.20
0.25

y = xc + sin(32 x) +

0.125

1.125

2.125

3.125

4.125

5.125

6.125

7.125

8.125

0.0 0.2 0.4 0.6 0.8

0.1

0.0

0.1

0.2

y = c * sin(32 x) +

0.25

1.25

2.25

3.25

4.25

0.8 0.6 0.4 0.20.0 0.2 0.4 0.6 0.8

0.4

0.2

0.0

0.2

0.4

0.6

y = sin(2c x) +

1

5

9

13

17

21

25

29

0.150.100.050.000.050.100.150.20

0.10

0.05

0.00

0.05

0.10

y = c + sin(32 x) +

2

1

0

1

2

0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8
0.3

0.2

0.1

0.0

0.1

0.2

0.3

f = 1

f = 2

f = 3

f = 5

y = sin(2 fx + c) + , c [0, 2]

0

1

2

3

4

5

6

7

40 20 0 20 40 60
40
30
20
10

0
10
20
30

y = xc + sin(32 x) +

0.125

1.125

2.125

3.125

4.125

5.125

6.125

7.125

8.125

40 20 0 20 40

20

10

0

10

20

y = c * sin(32 x) +

0.25

1.25

2.25

3.25

4.25

40 30 20 10 0 10 20 30 40
40

20

0

20

40

y = sin(2c x) +

1

5

9

13

17

21

25

29

40 20 0 20 40
30

20

10

0

10

20

30
y = c + sin(32 x) +

2

1

0

1

2

40 30 20 10 0 10 20 30 40

40

20

0

20

40

f = 1

f = 2
f = 3

f = 5

y = sin(2 fx + c) + , c [0, 2]

0

1

2

3

4

5

6

7

(i) Trend (ii) Amplitude (iii) Frequency (iv) Basline Shift (v) Auto-correlation

Figure 6: What is MOMENT learning? Structure in the PCA (top) and t-SNE (bottom) visualizations of the embeddings of
synthetically generated sinusoids suggest that MOMENT can capture subtle trend, scale, frequency, and auto-correlation
information. ϵ denotes gaussian noise with 0 mean and 0.1 standard deviation. c controls the factor of interest, i.e. the
power of the trend polynomial, amplitude, and frequency of the sine waves in experiments (i), (ii) & (iii), respectively.

D.6 Impact of Model Size

We studied the impact of scaling the size of the model and training data on zero-shot forecasting, imputation, and
anomaly detection performance. As shown in Fig. x, we found that increasing the size of the model generally improved
zero-shot performance (lower MSE and sMAPE, higher VUS-ROC). Since varying the size of the pre-training dataset is
expensive, we instead look at the zero-shot performance of model checkpoints before completing the first epoch. Our
findings suggest that increasing the diversity in training data may also improve zero-shot performance.

25

Crop ElectricDevices ECG5000 Wafer ChlorineConcentration

Crop ElectricDevices ECG5000 Wafer ChlorineConcentration

Figure 7: PCA (top) and t-SNE (bottom) visualizations of representations learned by MOMENT on the 5 largest UCR
datasets. Different colors represent different classes. Even without dataset-specific fine-tuning, MOMENT learns distinct
representations for different classes

D.7 Training losses

D.8 Efficiency Analysis

Model ETTh1-96
Total Param. (M) Trainable Param. (M) Mem. (MiB)

MOMENT 347.53 6.29 2079
GPT4TS 82.28 1.12 1031
TimesNet 0.89 0.89 683

Time-LLM 3623.71 254.37 4537

Table 21: Efficiency analysis of MOMENT against other forecasting models on the ETTh1 with prediction horizon set to
96. MOMENT outperforms all the listed models and has a fraction of parameters as the most recent LLM-based forecasting
method.

E Transparency Index

F Results Sources

G Radar Plot

We generate a radar plot (Fig. 1) to visually compare MOMENT with GPT4TS and TimesNet. The values obtained by each
method for a given task are min-max normalized with respect to the other methods for each of the 5 downstream tasks.
For imputation, long- and short-horizon forecasting, we report 1− the normalized MSE or sMAPE for the methods on
the weather and (subset of) M4 datasets, respectively. For classification and anomaly detection, we report the average
accuracy and VUS-ROC of the methods across all the datasets.

26

0 128 256 384 512-2

Trend: 0.12

0 128 256 384 512

Trend: 2.09

0 128 256 384 512

Trend: 4.06

0 128 256 384 512

Trend: 6.02

0 128 256 384 512

Trend: 7.99

(i) Trend

0 128 256 384 512-16

-6

4

14 Amplitude: 0.25

0 128 256 384 512

Amplitude: 1.19

0 128 256 384 512

Amplitude: 2.12

0 128 256 384 512

Amplitude: 3.06

0 128 256 384 512

Amplitude: 3.99

(ii) Amplitude

0 128 256 384 512-1.5

-1.0

-0.5

0.0

0.5

1.0

Frequency: 1.00

0 128 256 384 512

Frequency: 8.73

0 128 256 384 512

Frequency: 16.45

0 128 256 384 512

Frequency: 24.18

0 128 256 384 512

Frequency: 31.91

(iii) Frequency

0 128 256 384 512

-2

Baseline: -2.00

0 128 256 384 512

Baseline: -1.00

0 128 256 384 512

Baseline: -0.00

0 128 256 384 512

Baseline: 1.00

0 128 256 384 512

Baseline: 1.99

(iv) Baseline Shift

0 128 256 384 512-2

Offset: 0.00

0 128 256 384 512

Offset: 6.28

0 128 256 384 512

Offset: 6.27

0 128 256 384 512

Offset: 6.26

0 128 256 384 512

Offset: 6.25

(v) Phase

Figure 8: Examples of sinusoids used in the interpretability experiments.

Figure 9: Masking using a [MASK] tokens allows MOMENT to reconstruct time-series in a zero-shot setting. Since zeros
contain information, they bias model predictions. For two datasets ETTh1 and Weather, we mask the time-series with
zeros on the left and special mask tokens on the right.

27

0 20 40 60 80 100
y = sin(2 * c x) +

0.1

0.2

0.3

0.4

M
SE

3 2 1 0 1 2 3
Theoretical quantiles

0.4
0.3
0.2
0.1
0.0
0.1
0.2
0.3
0.4

Ob
se

rv
ed

 V
al

ue
s

R2 = 0.9692

Probability Plot of Mask Embeddings

Figure 10: (Left) MOMENT can reconstruct lower frequency time-series better in a zero-shot setting. (Right) The learned
mask token is approximately composed of numbers drawn from a standard normal.

0 2 4 6 8 10
Processed patches (in Billions)

0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20

Tr
ai

ni
ng

 L
os

s

 40M Small
125M Base
385M Large

0 2 4 6 8 10
Processed patches (in Billions)

0.08

0.10

0.12

0.14

0.16

0.18

0.20

Tr
ai

ni
ng

 L
os

s

Small (Flan-T5)
Small (Random)

10 3 10 2 10 1 100 101

Processed patches (in Billions)

0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

Tr
ai

ni
ng

 L
os

s

Small (Flan-T5)
Small (Random)

Figure 11: Training losses (MSE). A dashed vertical line denotes the first epoch. All models were trained with a
batch size of 131072 patches. (left) Larger models obtain lower training loss. right Eventually, randomly initialized
MOMENT-small outperform the same model initialized with Flan-T5 weights. The figure on the right is in log scale.

28

Sub-domain Indicator MOMENT

Data

Data size 1
Data sources 1
Data creators 0

Data source selection 1
Data curation 1

Data augmentation 1
Harmful data filtration 0

Copyrighted data 1
Data license 1

Personal information in data 1

Data Labor

Use of human labor 1
Employment of data laborers 1

Geographic distribution of data laborers 1
Wages 1

Instructions for creating data 1
Labor protections 1

Third party partners 1

Data Access Queryable external data access 1
Direct external data access 1

Compute

Compute usage 1
Development duration 1

Compute hardware 1
Hardware owner 1

Energy usage 1
Carbon emissions 1

Broader environmental impact 0

Methods

Model stages 1
Model objectives 1
Core frameworks 1

Additional dependencies 1

Data Mitigations Mitigations for privacy 0
Mitigations for copyright 0

Upstream Subtotal 75%

Sub-domain Indicator MOMENT

Model Basics

Input modality 1
Output modality 1

Model components 1
Model size 1

Model architecture 1
Centralized model documentation 1

Model Access
External model access protocol 1

Blackbox external model access 1
Full external model access 1

Capabilities

Capabilities description 1
Capabilities demonstration 1

Evaluation of capabilities 1
External reproducibility of capabilities evaluation 0

Third party capabilities evaluation 0

Limitations
Limitations description 1

Limitations demonstration 1
Third party evaluation of limitations 0

Risks

Risks description 1
Risks demonstration 0

Unintentional harm evaluation 0
External reproducibility of unintentional harm evaluation 0

Intentional harm evaluation 0
External reproducibility of intentional harm evaluation 0

Third party risks evaluation 0

Model Mitigations Mitigations description 0
Mitigations demonstration 0

Mitigations
Mitigations evaluation 0

External reproducibility of mitigations evaluation 0
Third party mitigations evaluation 0

Trustworthiness Trustworthiness evaluation 0
External reproducibility of trustworthiness evaluation 0

Inference Inference duration evaluation 1
Inference compute evaluation 1

Model Subtotal 51.5%

Table 22: Expected (left) upstream and (right) model transparency scores. MOMENT has one of the highest upstream
transparency. Our model transparency scores are lower due to (third-party) harm, mitigations, trustworthiness evaluation,
which are not well understood for time-series modeling.

Task Method Type Reimplementation/ Rerun Source

Long-horizon
Forecasting

Time-LLM LLM-based ✓ Time-LLM
GPT4TS × One Fits All

PatchTST, Fedformer, Autoformer,
Stationary, ETSformer, LightTS,

Informer, Reformer Transformer-based × One Fits All

Pyraformer, LogTrans × TimesNet
TimesNet, DLinear Deep learning × One Fits All

N-BEATS ✓ N-BEATS

Short-horizon
Forecasting

GPT4TS LLM-based ✓ One Fits All
TimesNet Deep learning ✓ TimesNet
N-BEATS ✓ N-BEATS

AutoARIMA, AutoTheta, AutoETS,
Seasonal Naive, Naive, Random Walk Statistical learning ✓ Nixtla Statsforecast Repository

Classification

GPT4TS LLM-based ✓ One Fits All
TimesNet Deep learning ✓ TimesNet

TS2Vec, T-Loss, TNC, TS-TCC, TST Unsupervised Representation learning × TS2Vec
CNN, Encoder, FCN, MCNN, MLP,

ResNet, t-LeNet, TWIESN Deep learning × DL4TSC Repository

DTW Statistical learning × TS2Vec

Anomaly
Detection

GPT4TS LLM-based ✓ One Fits All
TimesNet Deep learning ✓ TimesNet

Anomaly Transformer Transformer-based ✓ Anomaly Transformer
DGHL Deep learning ✓ Time-Series Model Selection
k-NN Statistical learning ✓ Time-Series Model Selection

Imputation

GPT4TS LLM-based ✓ One Fits All
TimesNet Deep learning ✓ TimesNet

PatchTST, ETSformer, LightTS,
Fedformer,Stationary, Autoformer,

Informer, Reformer
Transformer-based × One Fits All

DLinear Deep learning × One Fits All
Naive Statistical learning ✓ Pandas FFill, Pandas BFill

Linear, Nearest, Cubic ✓ Scipy Interp1D

Table 23: Source for the results for each baseline for all downstream task.

29

https://github.com/KimMeen/Time-LLM
https://arxiv.org/pdf/2302.11939.pdf
https://arxiv.org/pdf/2302.11939.pdf
https://arxiv.org/pdf/2210.02186.pdf
https://arxiv.org/pdf/2302.11939.pdf
https://github.com/philipperemy/n-beats/tree/master
https://arxiv.org/pdf/2302.11939.pdf
https://github.com/thuml/Time-Series-Library
https://github.com/philipperemy/n-beats/tree/master
https://github.com/Nixtla/statsforecast
https://arxiv.org/pdf/2302.11939.pdf
https://github.com/thuml/Time-Series-Library
https://github.com/yuezhihan/ts2vec
https://github.com/hfawaz/dl-4-tsc
https://github.com/yuezhihan/ts2vec
https://arxiv.org/pdf/2302.11939.pdf
https://github.com/thuml/Time-Series-Library
https://github.com/thuml/Anomaly-Transformer
https://github.com/mononitogoswami/tsad-model-selection
https://github.com/mononitogoswami/tsad-model-selection
https://arxiv.org/pdf/2302.11939.pdf
https://github.com/thuml/Time-Series-Library
https://arxiv.org/pdf/2302.11939.pdf
https://arxiv.org/pdf/2302.11939.pdf
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.ffill.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.bfill.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.interp1d.html

	Introduction
	Related Work
	Methodology
	The Time-series Pile
	Model Architecture
	Pre-training using Masked Time-series Modeling
	Fine-tuning on Downstream Tasks

	Experimental Setup and Results
	MOMENT can solve multiple time-series modeling tasks in limited supervision settings
	What is MOMENT Learning?
	Properties of Large Time-series Models

	Conclusion and Future Work
	Related Work
	Interesting directions for future work
	The Time-series Pile
	Experimental Setup and Results
	Forecasting
	Long-Horizon Forecasting
	Zero-shot Short-Horizon Forecasting

	Classification
	Anomaly Detection
	Imputation
	What is MOMENT Learning?
	Impact of Model Size
	Training losses
	Efficiency Analysis

	Transparency Index
	Results Sources
	Radar Plot

